BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 824732)

  • 21. Studies of Rh1 metarhodopsin stabilization in wild-type Drosophila and in mutants lacking one or both arrestins.
    Kiselev A; Subramaniam S
    Biochemistry; 1997 Feb; 36(8):2188-96. PubMed ID: 9047319
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The history of the prolonged depolarizing afterpotential (PDA) and its role in genetic dissection of Drosophila phototransduction.
    Minke B
    J Neurogenet; 2012 Jun; 26(2):106-17. PubMed ID: 22428622
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Trigger and amplification mechanisms in visual phototransduction.
    Chabre M
    Annu Rev Biophys Biophys Chem; 1985; 14():331-60. PubMed ID: 2988577
    [No Abstract]   [Full Text] [Related]  

  • 24. Desensitisation of peripheral photoreceptors shown by blue-induced decrease in transmittance of Drosophila rhabdomeres.
    Lo MV; Pak WL
    Nature; 1978 Jun; 273(5665):772-4. PubMed ID: 96353
    [No Abstract]   [Full Text] [Related]  

  • 25. The ninaA gene required for visual transduction in Drosophila encodes a homologue of cyclosporin A-binding protein.
    Shieh BH; Stamnes MA; Seavello S; Harris GL; Zuker CS
    Nature; 1989 Mar; 338(6210):67-70. PubMed ID: 2493138
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mutation that selectively affects rhodopsin concentration in the peripheral photoreceptors of Drosophila melanogaster.
    Larrivee DC; Conrad SK; Stephenson RS; Pak WL
    J Gen Physiol; 1981 Nov; 78(5):521-45. PubMed ID: 6796648
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reversibly temperature sensitive phototransduction mutant of Drosophila melanogaster.
    Deland MC; Pak WL
    Nat New Biol; 1973 Aug; 244(136):184-6. PubMed ID: 4198996
    [No Abstract]   [Full Text] [Related]  

  • 28. Four of the six Drosophila rhodopsin-expressing photoreceptors can mediate circadian entrainment in low light.
    Saint-Charles A; Michard-Vanhée C; Alejevski F; Chélot E; Boivin A; Rouyer F
    J Comp Neurol; 2016 Oct; 524(14):2828-44. PubMed ID: 26972685
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Polyfunctionality of the visual rhodopsin].
    Skulachev VP
    Usp Sovrem Biol; 1982; 94(3):331-44. PubMed ID: 6297178
    [No Abstract]   [Full Text] [Related]  

  • 30. Electrophysiological study of Drosophila rhodopsin mutants.
    Johnson EC; Pak WL
    J Gen Physiol; 1986 Nov; 88(5):651-73. PubMed ID: 3097245
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulatory arrestin cycle secures the fidelity and maintenance of the fly photoreceptor cell.
    Byk T; Bar-Yaacov M; Doza YN; Minke B; Selinger Z
    Proc Natl Acad Sci U S A; 1993 Mar; 90(5):1907-11. PubMed ID: 8446607
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of metarhodopsin in the generation of spontaneous quantum bumps in ultraviolet receptors of Limulus median eye. Evidence for reverse reactions into an active state.
    Lisman J
    J Gen Physiol; 1985 Feb; 85(2):171-87. PubMed ID: 3981127
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photoreceptor processes: some problems and perspectives.
    Goldsmith TH
    J Exp Zool; 1975 Oct; 194(1):89-101. PubMed ID: 453
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Direct measurement of the photoinduced electric potential on the photoreceptor cell disk membrane].
    Bol'shakov VI; Kalamkarov GR; Ostrovskiĭ MA
    Dokl Akad Nauk SSSR; 1979; 249(6):1485-8. PubMed ID: 527477
    [No Abstract]   [Full Text] [Related]  

  • 35. Photoreceptor function.
    Pak WL; Conrad SK; Kremer NE; Larrivee DC; Schinz RH; Wong F
    Basic Life Sci; 1980; 16():331-46. PubMed ID: 6779798
    [No Abstract]   [Full Text] [Related]  

  • 36. Absence of diglyceride kinase activity in the photoreceptor cells of Drosophila mutants.
    Yoshioka T; Inoue H; Hotta Y
    Biochem Biophys Res Commun; 1984 Feb; 119(1):389-95. PubMed ID: 6322785
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Circadian entrainment to red light in Drosophila: requirement of Rhodopsin 1 and Rhodopsin 6.
    Hanai S; Hamasaka Y; Ishida N
    Neuroreport; 2008 Sep; 19(14):1441-4. PubMed ID: 18766027
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rhodopsin-to-metarhodopsin II transition triggers amplified changes in cytosol ATP and ADP in intact retinal rod outer segments.
    Zuckerman R; Schmidt GJ; Dacko SM
    Proc Natl Acad Sci U S A; 1982 Nov; 79(21):6414-8. PubMed ID: 6983071
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Mechanism of early receptor potential generation and an electrical model of retinal rods in rats].
    Govardovskiĭ VI
    Biofizika; 1978; 23(3):514-9. PubMed ID: 667154
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Distinctive subtypes of bovine phospholipase C that have preferential expression in the retina and high homology to the norpA gene product of Drosophila.
    Ferreira PA; Shortridge RD; Pak WL
    Proc Natl Acad Sci U S A; 1993 Jul; 90(13):6042-6. PubMed ID: 8327481
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.