BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 8247407)

  • 1. The effects of lead exposure on learning in a multiple repeated acquisition and performance schedule.
    Cohn J; Cox C; Cory-Slechta DA
    Neurotoxicology; 1993; 14(2-3):329-46. PubMed ID: 8247407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subsensitivity of lead-exposed rats to the accuracy-impairing and rate-altering effects of MK-801 on a multiple schedule of repeated learning and performance.
    Cohn J; Cory-Slechta DA
    Brain Res; 1993 Jan; 600(2):208-18. PubMed ID: 8435747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of the role of dopaminergic systems in lead-induced learning impairments using a repeated acquisition and performance baseline.
    Cohn J; Cory-Slechta DA
    Neurotoxicology; 1994; 15(4):913-26. PubMed ID: 7715862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutamate and dopamine in nucleus accumbens core and shell: sequence learning versus performance.
    Bauter MR; Brockel BJ; Pankevich DE; Virgolini MB; Cory-Slechta DA
    Neurotoxicology; 2003 Mar; 24(2):227-43. PubMed ID: 12606295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gestational exposure to methylmercury retards choice in transition in aging rats.
    Newland MC; Reile PA; Langston JL
    Neurotoxicol Teratol; 2004; 26(2):179-94. PubMed ID: 15019952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exposure duration modifies the effects of low level lead of fixed-interval performance.
    Cory-Slechta DA
    Neurotoxicology; 1990; 11(3):427-41. PubMed ID: 2284049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chlorpyrifos produces selective learning deficits in rats working under a schedule of repeated acquisition and performance.
    Cohn J; MacPhail RC
    J Pharmacol Exp Ther; 1997 Oct; 283(1):312-20. PubMed ID: 9336338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential effects of prototype opioid agonists on the acquisition of conditional discriminations in monkeys.
    Moerschbaecher JM; Thompson DM
    J Pharmacol Exp Ther; 1983 Sep; 226(3):738-48. PubMed ID: 6887010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleus accumbens dopaminergic medication of fixed interval schedule-controlled behavior and its modulation by low-level lead exposure.
    Cory-Slechta DA; O'Mara DJ; Brockel BJ
    J Pharmacol Exp Ther; 1998 Aug; 286(2):794-805. PubMed ID: 9694936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Behavioral manifestations of prolonged lead exposure initiated at different stages of the life cycle: I. Schedule-controlled responding.
    Cory-Slechta DA; Pokora MJ
    Neurotoxicology; 1991; 12(4):745-60. PubMed ID: 1795899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acute trimethyltin exposure produces nonspecific effects on learning in rats working under a multiple repeated acquisition and performance schedule.
    Cohn J; MacPhail RC
    Neurotoxicol Teratol; 1996; 18(1):99-111. PubMed ID: 8700049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behavioral manifestations of prolonged lead exposure initiated at different stages of the life cycle: II. Delayed spatial alternation.
    Cory-Slechta DA; Pokora MJ; Widzowski DV
    Neurotoxicology; 1991; 12(4):761-76. PubMed ID: 1795900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repeated acquisition and performance chamber for mice: a paradigm for assessment of spatial learning and memory.
    Brooks AI; Cory-Slechta DA; Murg SL; Federoff HJ
    Neurobiol Learn Mem; 2000 Nov; 74(3):241-58. PubMed ID: 11031130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial reversal learning in Aroclor 1254-exposed rats: sex-specific deficits in associative ability and inhibitory control.
    Widholm JJ; Clarkson GB; Strupp BJ; Crofton KM; Seegal RF; Schantz SL
    Toxicol Appl Pharmacol; 2001 Jul; 174(2):188-98. PubMed ID: 11446834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deficits in fixed-interval performance following prenatal and postnatal lead exposure.
    Zenick H; Rodriquez W; Ward J; Elkington B
    Dev Psychobiol; 1979 Sep; 12(5):509-14. PubMed ID: 488533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of exposure period on in vivo hippocampal glutamate and GABA release in rats chronically exposed to lead.
    Lasley SM; Green MC; Gilbert ME
    Neurotoxicology; 1999 Aug; 20(4):619-29. PubMed ID: 10499360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential effects of ionizing radiation on the acquisition and performance of response sequences in rats.
    Winsauer PJ; Bixler MA; Mele PC
    Neurotoxicology; 1995; 16(2):257-69. PubMed ID: 7566685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutamatergic components underlying lead-induced impairments in hippocampal synaptic plasticity.
    Lasley SM; Gilbert ME
    Neurotoxicology; 2000 Dec; 21(6):1057-68. PubMed ID: 11233752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of postweaning low-level Pb exposure on sustained attention: a study of target densities, stimulus presentation rate, and stimulus predictability.
    Brockel BJ; Cory-Slechta DA
    Neurotoxicology; 1999 Dec; 20(6):921-33. PubMed ID: 10693973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal changes in repeated acquisition behavior after carbon monoxide exposure.
    Schrot J; Thomas JR; Robertson RF
    Neurobehav Toxicol Teratol; 1984; 6(1):23-8. PubMed ID: 6717727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.