These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Sound pressure gain produced by the human middle ear. Kurokawa H; Goode RL Otolaryngol Head Neck Surg; 1995 Oct; 113(4):349-55. PubMed ID: 7567003 [TBL] [Abstract][Full Text] [Related]
6. A comparative study of MED-EL FMT attachment to the long process of the incus in intact middle ears and its attachment to disarticulated stapes head. Chen T; Ren LJ; Yin DM; Li J; Yang L; Dai PD; Zhang TY Hear Res; 2017 Sep; 353():97-103. PubMed ID: 28666703 [TBL] [Abstract][Full Text] [Related]
7. Experimental study of the acoustic properties of incus replacement prostheses in a human temporal bone model. Nishihara S; Goode RL Am J Otol; 1994 Jul; 15(4):485-94. PubMed ID: 8588603 [TBL] [Abstract][Full Text] [Related]
8. Human middle-ear muscle pulls change tympanic-membrane shape and low-frequency middle-ear transmission magnitudes and delays. Cho NH; Ravicz ME; Puria S Hear Res; 2023 Mar; 430():108721. PubMed ID: 36821982 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of a cement incus replacement prosthesis in a temporal bone model. Asai M; Heiland KE; Huber AM; Goode RL Acta Otolaryngol; 1999; 119(5):573-6. PubMed ID: 10478598 [TBL] [Abstract][Full Text] [Related]
11. Measurement of umbo vibration in human subjects--method and possible clinical applications. Goode RL; Ball G; Nishihara S Am J Otol; 1993 May; 14(3):247-51. PubMed ID: 8372921 [TBL] [Abstract][Full Text] [Related]
13. Contribution of the flexible incudo-malleal joint to middle-ear sound transmission under static pressure loads. Warnholtz B; Schär M; Sackmann B; Lauxmann M; Chatzimichalis M; Prochazka L; Dobrev I; Huber AM; Sim JH Hear Res; 2021 Jul; 406():108272. PubMed ID: 34038827 [TBL] [Abstract][Full Text] [Related]
14. Mechanical Energy Dissipation Through the Ossicular Chain and Inner Ear Using Laser Doppler Vibrometer Measurement of Round Window Velocity. Ryan M; Lally J; Adams JK; Higgins S; Ahmed M; Aden J; Esquivel C; Spear SA Otol Neurotol; 2020 Mar; 41(3):e387-e391. PubMed ID: 31821262 [TBL] [Abstract][Full Text] [Related]
15. How does prosthesis head size affect vibration transmission in ossiculoplasty? Bance M; Campos A; Wong L; Morris DP; van Wijhe R Otolaryngol Head Neck Surg; 2007 Jul; 137(1):70-3. PubMed ID: 17599568 [TBL] [Abstract][Full Text] [Related]
16. Modeling sound transmission of human middle ear and its clinical applications using finite element analysis. Chen SI; Lee MH; Yao CM; Chen PR; Chou YF; Liu TC; Song YL; Lee CF Kaohsiung J Med Sci; 2013 Mar; 29(3):133-9. PubMed ID: 23465416 [TBL] [Abstract][Full Text] [Related]
17. Fixation and detachment of superior and anterior malleolar ligaments in human middle ear: experiment and modeling. Dai C; Cheng T; Wood MW; Gan RZ Hear Res; 2007 Aug; 230(1-2):24-33. PubMed ID: 17517484 [TBL] [Abstract][Full Text] [Related]
18. Nonlinear Vibration Response Measured at Umbo and Stapes in the Rabbit Middle ear. Peacock J; Pintelon R; Dirckx J J Assoc Res Otolaryngol; 2015 Oct; 16(5):569-80. PubMed ID: 26162416 [TBL] [Abstract][Full Text] [Related]
19. Coupling of an active middle-ear implant to the long process of the incus using an elastic clip attachment. Schraven SP; Mlynski R; Dalhoff E; Heyd A; Wildenstein D; Rak K; Radeloff A; Hagen R; Gummer AW Hear Res; 2016 Oct; 340():179-184. PubMed ID: 27037037 [TBL] [Abstract][Full Text] [Related]
20. The effect of increased stiffness of the incudostapedial joint on the transmission of air-conducted sound by the human middle ear. Alian W; Majdalawieh O; Kiefte M; Ejnell H; Bance M Otol Neurotol; 2013 Oct; 34(8):1503-9. PubMed ID: 23928510 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]