These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 8247727)

  • 1. Re-engineering DNA: design, synthesis, and properties of modified nucleic acids.
    Bergstrom DE; Wang G; Toma JD; Gerry N; Nichols R; Andrews P
    Nucleic Acids Symp Ser; 1993; (29):11-2. PubMed ID: 8247727
    [No Abstract]   [Full Text] [Related]  

  • 2. Non-enzymatic ribonucleotide reduction in the prebiotic context.
    Dragičević I; Barić D; Kovačević B; Golding BT; Smith DM
    Chemistry; 2015 Apr; 21(16):6132-43. PubMed ID: 25754795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Model for the Emergence of RNA from a Prebiotically Plausible Mixture of Ribonucleotides, Arabinonucleotides, and 2'-Deoxynucleotides.
    Kim SC; Zhou L; Zhang W; O'Flaherty DK; Rondo-Brovetto V; Szostak JW
    J Am Chem Soc; 2020 Feb; 142(5):2317-2326. PubMed ID: 31913615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Nucleozymes and minizymes].
    Zhenodarova SM
    Mol Biol (Mosk); 1994; 28(3):506-10. PubMed ID: 8052243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deoxyribonucleotides: the unusual chemistry and biochemistry of DNA precursors.
    Follmann H
    Chem Soc Rev; 2004 May; 33(4):225-33. PubMed ID: 15103404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deoxygenative [1,2]-hydride shift rearrangements in nucleoside and sugar chemistry: analogy with the [1,2]-electron shift in the deoxygenation of ribonucleotides by ribonucleotide reductases.
    Robins MJ; Nowak I; Wnuk SF; Hansske F; Madej D
    J Org Chem; 2007 Oct; 72(22):8216-21. PubMed ID: 17918996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A general synthesis of specifically deuterated nucleotides for studies of DNA and RNA.
    Chen B; Jamieson ER; Tullius TD
    Bioorg Med Chem Lett; 2002 Nov; 12(21):3093-6. PubMed ID: 12372509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of RNA with DNA in template-directed synthesis.
    Zielinski M; Kozlov IA; Orgel LE
    Helv Chim Acta; 2000; 83(8):1678-84. PubMed ID: 11543568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New evidence that the hydrophobic effect and dispersion are not major driving forces for nucleotide base stacking.
    Gellman SH; Haque TS; Newcomb LF
    Biophys J; 1996 Dec; 71(6):3523-6. PubMed ID: 8968621
    [No Abstract]   [Full Text] [Related]  

  • 10. Enzymatic reduction of ribonucleotides: biosynthesis pathway of deoxyribonucleotides.
    Follmann H
    Angew Chem Int Ed Engl; 1974 Sep; 13(9):569-79. PubMed ID: 4214088
    [No Abstract]   [Full Text] [Related]  

  • 11. Enzymatic and chemical synthesis of isodeoxynucleic acid (INA) and its properties.
    Ogino T; Inoue N; Sato K; Matsuda A
    Nucleic Acids Symp Ser (Oxf); 2007; (51):355-6. PubMed ID: 18029733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new approach to obtaining deoxyribo- and ribonucleoside 5'-mono- and triphosphates.
    Khomov VV; Bochkov DV; Tolstikova TG
    Dokl Biochem Biophys; 2005; 401():119-21. PubMed ID: 15999816
    [No Abstract]   [Full Text] [Related]  

  • 13. Voltammetric response and determination of DNA with a silver electrode.
    Fan C; Song H; Hu X; Li G; Zhu J; Xu X; Zhu D
    Anal Biochem; 1999 Jun; 271(1):1-7. PubMed ID: 10360998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oligo-2'-deoxyribonucleotides containing uracil modified at the 5-position with linkers ending with guanidinium groups.
    Roig V; Asseline U
    J Am Chem Soc; 2003 Apr; 125(15):4416-7. PubMed ID: 12683800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influences of ribonucleotide on a duplex conformation and its thermal stability: study with the chimeric RNA-DNA strands.
    Nakano S; Kanzaki T; Sugimoto N
    J Am Chem Soc; 2004 Feb; 126(4):1088-95. PubMed ID: 14746477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modified substrates of DNA polymerases and design of antivirals.
    Krayevsky AA; Alexandrova LA; Dyatkina NB; Kukhanova MK; Shirokova EA
    Acta Biochim Pol; 1996; 43(1):125-32. PubMed ID: 8790718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection and quantification of modified nucleotides in RNA using thin-layer chromatography.
    Grosjean H; Keith G; Droogmans L
    Methods Mol Biol; 2004; 265():357-91. PubMed ID: 15103084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. C4' sugar oxidation of deoxyribonucleotide triphosphates by chromium(V) complexes.
    Chowdhury T; Jamieson ER
    Mutat Res; 2006 Nov; 610(1-2):66-73. PubMed ID: 16890478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A "cleanup procedure" involving periodate oxidation in the enzymatic synthesis of chemically pure alpha-32P and alpha-33P labelled deoxyribonucleotides.
    Muthukumaran T; KrishnaMurthy NV; Sudhaharan T; Muralidharan B
    Appl Radiat Isot; 2005 Jul; 63(1):63-9. PubMed ID: 15866449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origin of informational polymers: differential stability of phosphoester bonds in ribomonomers and ribooligomers.
    Saladino R; Crestini C; Ciciriello F; Di Mauro E; Costanzo G
    J Biol Chem; 2006 Mar; 281(9):5790-6. PubMed ID: 16407319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.