These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 8247764)

  • 1. Synthesis of cholesteryl supports and phosphoramidites containing a novel peptidyl linker for automated synthesis of triple-helix forming oligonucleotides (TFOs).
    Vu H; Singh P; Joyce N; Hogan ME; Jayaraman K
    Nucleic Acids Symp Ser; 1993; (29):19-20. PubMed ID: 8247764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and properties of cholesteryl-modified triple-helix forming oligonucleotides containing a triglycyl linker.
    Vu H; Hill TS; Jayaraman K
    Bioconjug Chem; 1994; 5(6):666-8. PubMed ID: 7873671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel thymidine phosphoramidite synthon for incorporation of internucleoside phosphate linkers during automated oligodeoxynucleotide synthesis.
    Tabatadze D; Zamecnik P; Yanachkov I; Wright G; Pierson K; Zhang S; Bogdanov A; Metelev V
    Nucleosides Nucleotides Nucleic Acids; 2008 Feb; 27(2):157-72. PubMed ID: 18205070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel non-nucleosidic building blocks for the preparation of multilabeled oligonucleotides.
    Guzaev A; Salo H; Azhayev A; Lönnberg H
    Bioconjug Chem; 1996; 7(2):240-8. PubMed ID: 8983346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance of clustered 2'-O-(2-aminoethyl) residues for the gene targeting activity of triple helix-forming oligonucleotides.
    Puri N; Majumdar A; Cuenoud B; Miller PS; Seidman MM
    Biochemistry; 2004 Feb; 43(5):1343-51. PubMed ID: 14756571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient functionalization of oligonucleotides by new achiral nonnucleosidic monomers.
    Kupryushkin MS; Nekrasov MD; Stetsenko DA; Pyshnyi DV
    Org Lett; 2014 Jun; 16(11):2842-5. PubMed ID: 24820262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linker phosphoramidite reagents for the attachment of the first nucleoside to underivatized solid-phase supports.
    Pon RT; Yu S
    Nucleic Acids Res; 2004; 32(2):623-31. PubMed ID: 14752050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Porphyrin substituted phosphoramidites: new building blocks for porphyrin-oligonucleotide syntheses.
    Balaz M; Holmes AE; Benedetti M; Proni G; Berova N
    Bioorg Med Chem; 2005 Apr; 13(7):2413-21. PubMed ID: 15755643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methoxyoxalamido chemistry in the synthesis of novel amino linker and spacer phosphoramidites: a robust means for stability, structural versatility, and optimal tether length.
    Morocho AM; Karamyshev VN; Polushin NN
    Bioconjug Chem; 2004; 15(3):569-75. PubMed ID: 15149185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Versatile synthesis of oligodeoxyribonucleotide-oligospermine conjugates.
    Voirin E; Behr JP; Kotera M
    Nat Protoc; 2007; 2(6):1360-7. PubMed ID: 17545974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of new N-unprotected phosphoramidite building blocks having a silyl-type linker.
    Ohkubo A; Aoki K; Taguchi H; Seio K; Sekine M
    Nucleic Acids Symp Ser (Oxf); 2005; (49):127-8. PubMed ID: 17150666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 5-Fluoro-4-thiouridine phosphoramidite: new synthon for introducing photoaffinity label into oligodeoxynucleotides.
    Milecki J; Nowak J; Skalski B; Franzen S
    Bioorg Med Chem; 2011 Oct; 19(20):6098-106. PubMed ID: 21917468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence and pH effects of LNA-containing triple helix-forming oligonucleotides: physical chemistry, biochemistry, and modeling studies.
    Sun BW; Babu BR; Sørensen MD; Zakrzewska K; Wengel J; Sun JS
    Biochemistry; 2004 Apr; 43(14):4160-9. PubMed ID: 15065859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-radioactive labelling of oligonucleotides with pre-functionalized phosphoramidites or H-phosphonates during automated synthesis.
    Cech D; Schubert F; Möller U
    Nucleic Acids Symp Ser; 1991; (24):205-6. PubMed ID: 1841284
    [No Abstract]   [Full Text] [Related]  

  • 15. Design of artificial nucleobases for the recognition of the AT inversion by triple-helix forming oligonucleotides: a structure-stability relationship study and neighbour bases effect.
    Guianvarc'h D; Fourrey JL; Maurisse R; Sun JS; Benhida R
    Bioorg Med Chem; 2003 Jul; 11(13):2751-9. PubMed ID: 12788349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Triple helix formation by (G,A)-containing oligonucleotides: asymmetric sequence effect.
    Arimondo PB; Barcelo F; Sun JS; Maurizot JC; Garestier T; Hélène C
    Biochemistry; 1998 Nov; 37(47):16627-35. PubMed ID: 9843430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and alternate-stranded triple helix forming ability of novel anthraquinone modified alpha-beta chimeric DNA.
    Moriguchi T; Azam AT; Shinozuka K
    Nucleic Acids Symp Ser (Oxf); 2005; (49):7-8. PubMed ID: 17150606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A convenient method for the preparation of hapten phosphoramidites.
    Fino JR; Mattingly PG; Ray KA
    Bioconjug Chem; 1996; 7(2):274-80. PubMed ID: 8983351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Triple helix-forming oligodeoxyribonucleotides targeted to the human tumor necrosis factor (TNF) gene inhibit TNF production and block the TNF-dependent growth of human glioblastoma tumor cells.
    Aggarwal BB; Schwarz L; Hogan ME; Rando RF
    Cancer Res; 1996 Nov; 56(22):5156-64. PubMed ID: 8912851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective O-phosphitilation with nucleoside phosphoramidite reagents.
    Gryaznov SM; Letsinger RL
    Nucleic Acids Res; 1992 Apr; 20(8):1879-82. PubMed ID: 1579488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.