BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 8247787)

  • 1. Design and synthesis of regioselective cleaving reagents for oligonucleotides.
    Mori S; Ohgo Y; Tanaka H; Katoh A; Kaji H; Samejima T; Mitsunobu O
    Nucleic Acids Symp Ser; 1993; (29):45-6. PubMed ID: 8247787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of a library of allyl alpha-L-arabinofuranosyl-alpha- or beta-D-xylopyranosides; route to higher oligomers.
    Utille JP; Jeacomine I
    Carbohydr Res; 2007 Dec; 342(17):2649-56. PubMed ID: 17904112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient synthesis of methyl 3,5-di-O-benzyl-alpha-D-ribofuranoside and application to the synthesis of 2'-C-beta-alkoxymethyluridines.
    Li NS; Lu J; Piccirilli JA
    Org Lett; 2007 Aug; 9(16):3009-12. PubMed ID: 17629285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A synthetic route to 9-(polyhydroxyalkyl)purines.
    Horton D; Thomas S; Gallucci J
    Carbohydr Res; 2006 Sep; 341(13):2211-8. PubMed ID: 16824497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The diastereoselective synthesis of methyl 5-deoxy-5-(dialkylphosphono)-5-(dialkylphosphorylamido)-2,3-O-isopropylidene-beta-D-ribofuranosides.
    Cui Z; Zhang J; Wang F; Wang Y; Miao Z; Chen R
    Carbohydr Res; 2008 Oct; 343(15):2530-4. PubMed ID: 18662811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of methyl 2-O-allyl-(and 3-O-allyl)-5-O-benzyl-beta-D- ribofuranoside.
    Desai T; Gigg J; Gigg R
    Carbohydr Res; 1996 Jan; 280(2):209-21. PubMed ID: 8593636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A convenient preparation of 1,2,3-tri-O-acetyl-beta-D-ribofuranose by enzymatic regioselective 5-O-deacetylation of the peracetylated ribofuranose.
    Chien TC; Chern JW
    Carbohydr Res; 2004 Apr; 339(6):1215-7. PubMed ID: 15063214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Convenient preparation of 3,5-anhydro- and 2,5-anhydropentofuranosides, and 5,6-anhydro-D-glucofuranose by use of the Mitsunobu reaction.
    Schulze O; Voss J; Adiwidjaja G
    Carbohydr Res; 2005 Mar; 340(4):587-95. PubMed ID: 15721328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stereoselective synthesis of a ketohexofuranose from an aldohexopyranose by a [6+1-1] strategy.
    Babu BS; Balasubramanian KK
    Carbohydr Res; 2005 Mar; 340(4):753-8. PubMed ID: 15721349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. D-Arabinose-based synthesis of homo-C-d4T and homo-C-thymidine.
    Doboszewski B
    Nucleosides Nucleotides Nucleic Acids; 2009 Oct; 28(10):875-901. PubMed ID: 20183559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Picolinoxy group, a new leaving group for anti SN2' selective allylic substitution with aryl anions based on Grignard reagents.
    Kiyotsuka Y; Acharya HP; Katayama Y; Hyodo T; Kobayashi Y
    Org Lett; 2008 May; 10(9):1719-22. PubMed ID: 18396885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An efficient synthesis of methyl 2,3-anhydro-alpha-D-ribofuranoside.
    Callam CS; Gadikota RR; Lowary TL
    Carbohydr Res; 2001 Jan; 330(2):267-70. PubMed ID: 11217980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly diastereoselective synthesis of homoallylic alcohols bearing adjacent quaternary centers using substituted allylic zinc reagents.
    Ren H; Dunet G; Mayer P; Knochel P
    J Am Chem Soc; 2007 May; 129(17):5376-7. PubMed ID: 17408274
    [No Abstract]   [Full Text] [Related]  

  • 14. Convenient synthesis of allylic thioethers from phosphorothioate esters and alcohols.
    Robertson F; Wu J
    Org Lett; 2010 Jun; 12(11):2668-71. PubMed ID: 20441179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-pot, three-component synthesis of linearly substituted homoallylic alcohols via allyl(isopropoxy)dimethylsilane.
    Li L; Navasero N
    Org Lett; 2004 Sep; 6(18):3091-4. PubMed ID: 15330595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, synthesis and antiviral activity of novel 4,5-disubstituted 7-(beta-D-ribofuranosyl)pyrrolo[2,3-d][1,2,3]triazines and the novel 3-amino-5-methyl-1-(beta-D-ribofuranosyl)- and 3-amino-5-methyl-1-(2-deoxy-beta-D-ribofuranosyl)-1,5-dihydro-1,4,5,6,7,8-hexaazaacenaphthylene as analogues of triciribine.
    Migawa MT; Drach JC; Townsend LB
    J Med Chem; 2005 Jun; 48(11):3840-51. PubMed ID: 15916436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly functionalised cyclobutanols via samarium(II) iodide-induced pinacol cyclisations of carbohydrate-derived 1,4-diketones.
    Williams DB; Caddy J; Blann K
    Carbohydr Res; 2005 May; 340(7):1301-9. PubMed ID: 15854599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ring opening of acylated β-d-arabinofuranose 1,2,5-orthobenzoates with nucleophiles allows access to novel selectively-protected arabinofuranose building blocks.
    Podvalnyy NM; Sedinkin SL; Abronina PI; Zinin AI; Fedina KG; Torgov VI; Kononov LO
    Carbohydr Res; 2011 Jan; 346(1):7-15. PubMed ID: 21109236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The thio-Mitsunobu reaction: a useful tool for the preparation of 2,5-anhydro-2-thio- and 3,5-anhydro-3-thiopentofuranosides.
    Schulze O; Voss J; Adiwidjaja G; Olbrich F
    Carbohydr Res; 2004 Jul; 339(10):1787-802. PubMed ID: 15220089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. X-ray structure of 1,3,4-tri-O-acetyl-2-deoxy-beta-d-erythro-pentopyranose.
    Chen JJ; Gao JR; Han L; Jia JH; Sheng WJ; Li YJ
    Carbohydr Res; 2009 Oct; 344(15):2056-9. PubMed ID: 19616773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.