BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 8248136)

  • 1. Preferential repair of ionizing radiation-induced damage in the transcribed strand of an active human gene is defective in Cockayne syndrome.
    Leadon SA; Cooper PK
    Proc Natl Acad Sci U S A; 1993 Nov; 90(22):10499-503. PubMed ID: 8248136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cells from XP-D and XP-D-CS patients exhibit equally inefficient repair of UV-induced damage in transcribed genes but different capacity to recover UV-inhibited transcription.
    van Hoffen A; Kalle WH; de Jong-Versteeg A; Lehmann AR; van Zeeland AA; Mullenders LH
    Nucleic Acids Res; 1999 Jul; 27(14):2898-904. PubMed ID: 10390531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A difference in the pattern of repair in a large genomic region in UV-irradiated normal human and Cockayne syndrome cells.
    Shanower GA; Kantor GJ
    Mutat Res; 1997 Nov; 385(2):127-37. PubMed ID: 9447234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Relationship between transcription and repair of radioinduced DNA damage].
    Zhestianikov VD; Igusheva OA
    Radiats Biol Radioecol; 1997; 37(4):549-54. PubMed ID: 9599610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultraviolet-sensitive syndrome cells are defective in transcription-coupled repair of cyclobutane pyrimidine dimers.
    Spivak G; Itoh T; Matsunaga T; Nikaido O; Hanawalt P; Yamaizumi M
    DNA Repair (Amst); 2002 Aug; 1(8):629-43. PubMed ID: 12509286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for defective repair of cyclobutane pyrimidine dimers with normal repair of other DNA photoproducts in a transcriptionally active gene transfected into Cockayne syndrome cells.
    Barrett SF; Robbins JH; Tarone RE; Kraemer KH
    Mutat Res; 1991 Nov; 255(3):281-91. PubMed ID: 1719400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell type-specific hypersensitivity to oxidative damage in CSB and XPA mice.
    de Waard H; de Wit J; Gorgels TG; van den Aardweg G; Andressoo JO; Vermeij M; van Steeg H; Hoeijmakers JH; van der Horst GT
    DNA Repair (Amst); 2003 Jan; 2(1):13-25. PubMed ID: 12509265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cockayne syndrome and xeroderma pigmentosum.
    Rapin I; Lindenbaum Y; Dickson DW; Kraemer KH; Robbins JH
    Neurology; 2000 Nov; 55(10):1442-9. PubMed ID: 11185579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defective repair of ionizing radiation damage in Cockayne's syndrome and xeroderma pigmentosum group G.
    Cooper PK; Leadon SA
    Ann N Y Acad Sci; 1994 Jul; 726():330-2. PubMed ID: 8092696
    [No Abstract]   [Full Text] [Related]  

  • 10. The genetic defect in Cockayne syndrome is associated with a defect in repair of UV-induced DNA damage in transcriptionally active DNA.
    Venema J; Mullenders LH; Natarajan AT; van Zeeland AA; Mayne LV
    Proc Natl Acad Sci U S A; 1990 Jun; 87(12):4707-11. PubMed ID: 2352945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The sensitivity of Cockayne's syndrome cells to DNA-damaging agents is not due to defective transcription-coupled repair of active genes.
    van Oosterwijk MF; Versteeg A; Filon R; van Zeeland AA; Mullenders LH
    Mol Cell Biol; 1996 Aug; 16(8):4436-44. PubMed ID: 8754844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-sensitivity of certain xeroderma pigmentosum and Cockayne syndrome fibroblast strains to both ionizing radiation and ultraviolet light.
    Chan GL; Little JB
    Mol Gen Genet; 1981; 181(4):562-3. PubMed ID: 6943407
    [No Abstract]   [Full Text] [Related]  

  • 13. Sequence-specific and domain-specific DNA repair in xeroderma pigmentosum and Cockayne syndrome cells.
    Tu Y; Bates S; Pfeifer GP
    J Biol Chem; 1997 Aug; 272(33):20747-55. PubMed ID: 9252397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. U.v.-induced nuclear accumulation of p53 is evoked through DNA damage of actively transcribed genes independent of the cell cycle.
    Yamaizumi M; Sugano T
    Oncogene; 1994 Oct; 9(10):2775-84. PubMed ID: 8084582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative damage-induced PCNA complex formation is efficient in xeroderma pigmentosum group A but reduced in Cockayne syndrome group B cells.
    Balajee AS; Dianova I; Bohr VA
    Nucleic Acids Res; 1999 Nov; 27(22):4476-82. PubMed ID: 10536158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impaired repair of ionizing radiation-induced DNA damage in Cockayne syndrome cells.
    Cramers P; Verhoeven EE; Filon AR; Rockx DA; Santos SJ; van der Leer AA; Kleinjans JC; van Zeeland AA; Mullenders LH
    Radiat Res; 2011 Apr; 175(4):432-43. PubMed ID: 21299404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repair of some active genes in Cockayne syndrome cells is at the genome overall rate.
    Kantor GJ; Bastin SA
    Mutat Res; 1995 May; 336(3):223-33. PubMed ID: 7739610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deficient repair of the transcribed strand of active genes in Cockayne's syndrome cells.
    van Hoffen A; Natarajan AT; Mayne LV; van Zeeland AA; Mullenders LH; Venema J
    Nucleic Acids Res; 1993 Dec; 21(25):5890-5. PubMed ID: 8290349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xeroderma pigmentosum complementation group G associated with Cockayne syndrome.
    Vermeulen W; Jaeken J; Jaspers NG; Bootsma D; Hoeijmakers JH
    Am J Hum Genet; 1993 Jul; 53(1):185-92. PubMed ID: 8317483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UV damage causes uncontrolled DNA breakage in cells from patients with combined features of XP-D and Cockayne syndrome.
    Berneburg M; Lowe JE; Nardo T; Araújo S; Fousteri MI; Green MH; Krutmann J; Wood RD; Stefanini M; Lehmann AR
    EMBO J; 2000 Mar; 19(5):1157-66. PubMed ID: 10698956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.