These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 8248175)
1. Role of dimerization in yeast aspartyl-tRNA synthetase and importance of the class II invariant proline. Eriani G; Cavarelli J; Martin F; Dirheimer G; Moras D; Gangloff J Proc Natl Acad Sci U S A; 1993 Nov; 90(22):10816-20. PubMed ID: 8248175 [TBL] [Abstract][Full Text] [Related]
2. Active site mapping of yeast aspartyl-tRNA synthetase by in vivo selection of enzyme mutations lethal for cell growth. Ador L; Camasses A; Erbs P; Cavarelli J; Moras D; Gangloff J; Eriani G J Mol Biol; 1999 Apr; 288(2):231-42. PubMed ID: 10329139 [TBL] [Abstract][Full Text] [Related]
3. Yeast tRNA(Asp) recognition by its cognate class II aminoacyl-tRNA synthetase. Cavarelli J; Rees B; Ruff M; Thierry JC; Moras D Nature; 1993 Mar; 362(6416):181-4. PubMed ID: 8450889 [TBL] [Abstract][Full Text] [Related]
4. The free yeast aspartyl-tRNA synthetase differs from the tRNA(Asp)-complexed enzyme by structural changes in the catalytic site, hinge region, and anticodon-binding domain. Sauter C; Lorber B; Cavarelli J; Moras D; Giegé R J Mol Biol; 2000 Jun; 299(5):1313-24. PubMed ID: 10873455 [TBL] [Abstract][Full Text] [Related]
5. Class II aminoacyl transfer RNA synthetases: crystal structure of yeast aspartyl-tRNA synthetase complexed with tRNA(Asp). Ruff M; Krishnaswamy S; Boeglin M; Poterszman A; Mitschler A; Podjarny A; Rees B; Thierry JC; Moras D Science; 1991 Jun; 252(5013):1682-9. PubMed ID: 2047877 [TBL] [Abstract][Full Text] [Related]
6. Yeast aspartyl-tRNA synthetase residues interacting with tRNA(Asp) identity bases connectively contribute to tRNA(Asp) binding in the ground and transition-state complex and discriminate against non-cognate tRNAs. Eriani G; Gangloff J J Mol Biol; 1999 Aug; 291(4):761-73. PubMed ID: 10452887 [TBL] [Abstract][Full Text] [Related]
8. Mirror image alternative interaction patterns of the same tRNA with either class I arginyl-tRNA synthetase or class II aspartyl-tRNA synthetase. Sissler M; Eriani G; Martin F; Giegé R; Florentz C Nucleic Acids Res; 1997 Dec; 25(24):4899-906. PubMed ID: 9396794 [TBL] [Abstract][Full Text] [Related]
9. Crystal structure of the N-terminal anticodon-binding domain of the nondiscriminating aspartyl-tRNA synthetase from Helicobacter pylori. Songsiriritthigul C; Suebka S; Chen CJ; Fuengfuloy P; Chuawong P Acta Crystallogr F Struct Biol Commun; 2017 Feb; 73(Pt 2):62-69. PubMed ID: 28177315 [TBL] [Abstract][Full Text] [Related]
10. Yeast aspartyl-tRNA synthetase: a structural view of the aminoacylation reaction. Cavarelli J; Rees B; Thierry JC; Moras D Biochimie; 1993; 75(12):1117-23. PubMed ID: 8199247 [TBL] [Abstract][Full Text] [Related]
11. A domain in the N-terminal extension of class IIb eukaryotic aminoacyl-tRNA synthetases is important for tRNA binding. Frugier M; Moulinier L; Giegé R EMBO J; 2000 May; 19(10):2371-80. PubMed ID: 10811628 [TBL] [Abstract][Full Text] [Related]
12. The class II aminoacyl-tRNA synthetases and their active site: evolutionary conservation of an ATP binding site. Eriani G; Cavarelli J; Martin F; Ador L; Rees B; Thierry JC; Gangloff J; Moras D J Mol Evol; 1995 May; 40(5):499-508. PubMed ID: 7783225 [TBL] [Abstract][Full Text] [Related]
13. An intricate RNA structure with two tRNA-derived motifs directs complex formation between yeast aspartyl-tRNA synthetase and its mRNA. Ryckelynck M; Masquida B; Giegé R; Frugier M J Mol Biol; 2005 Dec; 354(3):614-29. PubMed ID: 16257416 [TBL] [Abstract][Full Text] [Related]
14. The active site of yeast aspartyl-tRNA synthetase: structural and functional aspects of the aminoacylation reaction. Cavarelli J; Eriani G; Rees B; Ruff M; Boeglin M; Mitschler A; Martin F; Gangloff J; Thierry JC; Moras D EMBO J; 1994 Jan; 13(2):327-37. PubMed ID: 8313877 [TBL] [Abstract][Full Text] [Related]
15. Determinant nucleotides of yeast tRNA(Asp) interact directly with aspartyl-tRNA synthetase. Rudinger J; Puglisi JD; Pütz J; Schatz D; Eckstein F; Florentz C; Giegé R Proc Natl Acad Sci U S A; 1992 Jul; 89(13):5882-6. PubMed ID: 1631068 [TBL] [Abstract][Full Text] [Related]
16. The structure of an AspRS-tRNA(Asp) complex reveals a tRNA-dependent control mechanism. Moulinier L; Eiler S; Eriani G; Gangloff J; Thierry JC; Gabriel K; McClain WH; Moras D EMBO J; 2001 Sep; 20(18):5290-301. PubMed ID: 11566892 [TBL] [Abstract][Full Text] [Related]
17. Crystals of Thermus thermophilus tRNAAsp complexed with its cognate aspartyl-tRNA synthetase have a solvent content of 75%. Comparison with other aminoacylation systems. Briand C; Poterszman A; Mitschler A; Yusupov M; Thierry JC; Moras D Acta Crystallogr D Biol Crystallogr; 1998 Nov; 54(Pt 6 Pt 2):1382-6. PubMed ID: 10089514 [TBL] [Abstract][Full Text] [Related]
18. Expanding tRNA recognition of a tRNA synthetase by a single amino acid change. Feng L; Tumbula-Hansen D; Toogood H; Soll D Proc Natl Acad Sci U S A; 2003 May; 100(10):5676-81. PubMed ID: 12730374 [TBL] [Abstract][Full Text] [Related]
19. An intermediate step in the recognition of tRNA(Asp) by aspartyl-tRNA synthetase. Briand C; Poterszman A; Eiler S; Webster G; Thierry J; Moras D J Mol Biol; 2000 Jun; 299(4):1051-60. PubMed ID: 10843857 [TBL] [Abstract][Full Text] [Related]
20. Mutation and evolution of the magnesium-binding site of a class II aminoacyl-tRNA synthetase. Ador L; Jaeger S; Geslain R; Martin F; Cavarelli J; Eriani G Biochemistry; 2004 Jun; 43(22):7028-37. PubMed ID: 15170340 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]