These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 8248520)

  • 1. The phosphoinositide signalling system. I. Historical background. II. Effects of lithium on the accumulation of second messenger inositol 1,4,5-trisphosphate in brain cortex slices.
    Hokin LE; Dixon JF
    Prog Brain Res; 1993; 98():309-15. PubMed ID: 8248520
    [No Abstract]   [Full Text] [Related]  

  • 2. Lithium increases accumulation of second messenger inositol 1,4,5-trisphosphate in brain cortex slices in species ranging from mouse to monkey.
    Hokin LE
    Adv Enzyme Regul; 1993; 33():299-312. PubMed ID: 8356914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lithium enhances accumulation of [3H]inositol radioactivity and mass of second messenger inositol 1,4,5-trisphosphate in monkey cerebral cortex slices.
    Dixon JF; Lee CH; Los GV; Hokin LE
    J Neurochem; 1992 Dec; 59(6):2332-5. PubMed ID: 1431911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disruption of phosphoinositide signalling by lithium.
    Nahorski SR; Jenkinson S; Challiss RA
    Biochem Soc Trans; 1992 May; 20(2):430-4. PubMed ID: 1327919
    [No Abstract]   [Full Text] [Related]  

  • 5. Lithium reduces the accumulation of inositol polyphosphate second messengers following cholinergic stimulation of cerebral cortex slices.
    Kennedy ED; Challiss RA; Nahorski SR
    J Neurochem; 1989 Nov; 53(5):1652-5. PubMed ID: 2795023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lithium stimulates accumulation of second-messenger inositol 1,4,5-trisphosphate and other inositol phosphates in mouse pancreatic minilobules without inositol supplementation.
    Dixon JF; Hokin LE
    Biochem J; 1994 Nov; 304 ( Pt 1)(Pt 1):251-8. PubMed ID: 7998941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of L-690,488, a prodrug of the bisphosphonate inositol monophosphatase inhibitor L-690,330, on phosphatidylinositol cycle markers.
    Atack JR; Prior AM; Fletcher SR; Quirk K; McKernan R; Ragan CI
    J Pharmacol Exp Ther; 1994 Jul; 270(1):70-6. PubMed ID: 8035344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The messenger phosphatidylinositol and antimanic drug-antidepressants].
    Morishita S
    Yakubutsu Seishin Kodo; 1991 Jun; 11(3):177-85. PubMed ID: 1663305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The antibipolar drug valproate mimics lithium in stimulating glutamate release and inositol 1,4,5-trisphosphate accumulation in brain cortex slices but not accumulation of inositol monophosphates and bisphosphates.
    Dixon JF; Hokin LE
    Proc Natl Acad Sci U S A; 1997 Apr; 94(9):4757-60. PubMed ID: 9114064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of lithium on phosphoinositide metabolism in vivo.
    Sherman WR; Gish BG; Honchar MP; Munsell LY
    Fed Proc; 1986 Oct; 45(11):2639-46. PubMed ID: 3019784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative effects of lithium on the phosphoinositide cycle in rat cerebral cortex, hippocampus, and striatum.
    Jenkinson S; Patel N; Nahorski SR; Challiss RA
    J Neurochem; 1993 Sep; 61(3):1082-90. PubMed ID: 8395558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Li+ increases accumulation of inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate in cholinergically stimulated brain cortex slices in guinea pig, mouse and rat. The increases require inositol supplementation in mouse and rat but not in guinea pig.
    Lee CH; Dixon JF; Reichman M; Moummi C; Los G; Hokin LE
    Biochem J; 1992 Mar; 282 ( Pt 2)(Pt 2):377-85. PubMed ID: 1546953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of lithium on second messenger accumulation in NG108-15 cells.
    Brami BA; Leli U; Hauser G
    Biochem Biophys Res Commun; 1991 Jan; 174(2):606-12. PubMed ID: 1847049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Regulation of excitation-contraction coupling in skeletal muscle by phosphoinositide messenger system].
    Dong Z; Zhu PH
    Sheng Li Ke Xue Jin Zhan; 1994 Apr; 25(2):126-30. PubMed ID: 7973571
    [No Abstract]   [Full Text] [Related]  

  • 15. Lithium stimulates glutamate "release" and inositol 1,4,5-trisphosphate accumulation via activation of the N-methyl-D-aspartate receptor in monkey and mouse cerebral cortex slices.
    Dixon JF; Los GV; Hokin LE
    Proc Natl Acad Sci U S A; 1994 Aug; 91(18):8358-62. PubMed ID: 8078888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overview of phosphoinositide hydrolysis.
    Kendall D
    Curr Protoc Pharmacol; 2001 May; Chapter 2():Unit2.3. PubMed ID: 21971794
    [No Abstract]   [Full Text] [Related]  

  • 17. A neurophysiological study of a lithium-sensitive phosphoinositide system in the hamster suprachiasmatic (SCN) biological clock in vitro.
    Mason R; Biello SM
    Neurosci Lett; 1992 Sep; 144(1-2):135-8. PubMed ID: 1331907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is the Na(+)-K(+)-ATPase the link between phosphoinositide metabolism and bipolar disorder?
    el-Mallakh RS; Li R
    J Neuropsychiatry Clin Neurosci; 1993; 5(4):361-8. PubMed ID: 8286932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the effects of lithium on phosphatidylinositol (PI) cycle activity in human muscarinic m1 receptor-transfected CHO cells.
    Atack JR; Prior AM; Griffith D; Ragan CI
    Br J Pharmacol; 1993 Oct; 110(2):809-15. PubMed ID: 8242255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Presynaptic and postsynaptic mechanisms of phosphoinositide metabolites].
    Higashida H; Hoshi N; Yokoyama S; Nozawa Y; Okano Y; Ogura A; Fukuda K; Brown DA
    Tanpakushitsu Kakusan Koso; 1990 May; 35(7 Suppl):1026-34. PubMed ID: 1694032
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.