These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. In vivo binding of the Cry11Bb toxin of Bacillus thuringiensis subsp. medellin to the midgut of mosquito larvae (Diptera: Culicidae). Ruiz LM; Segura C; Trujillo J; Orduz S Mem Inst Oswaldo Cruz; 2004 Feb; 99(1):73-9. PubMed ID: 15057351 [TBL] [Abstract][Full Text] [Related]
6. The toxicity of two Bacillus thuringiensis delta-endotoxins to gypsy moth larvae is inversely related to the affinity of binding sites on midgut brush border membranes for the toxins. Wolfersberger MG Experientia; 1990 May; 46(5):475-7. PubMed ID: 2161350 [TBL] [Abstract][Full Text] [Related]
7. Synergism of mosquitocidal toxicity between CytA and CryIVD proteins using inclusions produced from cloned genes of Bacillus thuringiensis. Wu D; Johnson JJ; Federici BA Mol Microbiol; 1994 Sep; 13(6):965-72. PubMed ID: 7854129 [TBL] [Abstract][Full Text] [Related]
8. [Experimental observation of toxic effect of Bacillus thuringiensis var. israelensis against Aedes, Culex and Anopheles larvae]. Li JL; Zhu GD; Zhou HY; Tang JX; Cao J Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2014 Feb; 26(1):67-8. PubMed ID: 24800571 [TBL] [Abstract][Full Text] [Related]
9. Binding of Cyt1Aa and Cry11Aa toxins of Bacillus thuringiensis serovar israelensis to brush border membrane vesicles of Tipula paludosa (Diptera: Nematocera) and subsequent pore formation. Oestergaard J; Ehlers RU; Martínez-Ramírez AC; Real MD Appl Environ Microbiol; 2007 Jun; 73(11):3623-9. PubMed ID: 17416690 [TBL] [Abstract][Full Text] [Related]
10. [Inversion polymorphism in malaria mosquito Anopheles messeae. Part X. Resistance of larvae with different genotypes to toxins of crystal-forming bacteria Bacillus thuringiensis subsp. israelensis (serovar H14)]. Gordeev MI; Burlak VA Genetika; 1991 Feb; 27(2):238-46. PubMed ID: 1874433 [TBL] [Abstract][Full Text] [Related]
11. [The relationship of the larval behavioral traits of the malarial mosquito Anopheles messeae (Diptera: Culicidae) to its sensitivity to the entomopathogenic bacterium Bacillus thuringiensis subspecies israelensis]. Burlak VA Parazitologiia; 1998; 32(1):11-20. PubMed ID: 9612818 [TBL] [Abstract][Full Text] [Related]
12. Localization of Bacillus thuringiensis Cry1A toxin-binding molecules in gypsy moth larval gut sections using fluorescence microscopy. Valaitis AP J Invertebr Pathol; 2011 Oct; 108(2):69-75. PubMed ID: 21767544 [TBL] [Abstract][Full Text] [Related]
13. Experimental formulations of Bacillus sphaericus and B. thuringiensis israelensis against Culex quinquefasciatus and Anopheles gambiae (Diptera: Culicidae) in Burkina Faso. Skovmand O; Sanogo E J Med Entomol; 1999 Jan; 36(1):62-7. PubMed ID: 10071494 [TBL] [Abstract][Full Text] [Related]
14. Impact of sunlight exposure on the residual efficacy of biolarvicides Bacillus thuringiensis israelensis and Bacillus sphaericus against the main malaria vector, Anopheles gambiae. Zogo B; Tchiekoi BN; Koffi AA; Dahounto A; Ahoua Alou LP; Dabiré RK; Baba-Moussa L; Moiroux N; Pennetier C Malar J; 2019 Feb; 18(1):55. PubMed ID: 30808348 [TBL] [Abstract][Full Text] [Related]
15. [Study of the larvicidal activity of Bacillus thuringiensis var. israelensis on Toxorhynchitinae larvae (author's transl)]. Larget I; Charles JF Bull Soc Pathol Exot Filiales; 1982; 75(2):121-30. PubMed ID: 6125271 [TBL] [Abstract][Full Text] [Related]
16. Optimization of medium composition for the production of mosquitocidal toxins from Bacillus thuringiensis subsp. israelensis. Poopathi S; Archana B Indian J Exp Biol; 2012 Jan; 50(1):65-71. PubMed ID: 22279944 [TBL] [Abstract][Full Text] [Related]
17. Mosquito larvicidal activity of Escherichia coli with combinations of genes from Bacillus thuringiensis subsp. israelensis. Ben-Dov E; Boussiba S; Zaritsky A J Bacteriol; 1995 May; 177(10):2851-7. PubMed ID: 7751296 [TBL] [Abstract][Full Text] [Related]