These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 8248626)

  • 1. Measurement of the net production of acidity by a sulphate-reducing bacterium: experimental checking of theoretical models of microbially influenced corrosion.
    Daumas S; Magot M; Crolet JL
    Res Microbiol; 1993 May; 144(4):327-32. PubMed ID: 8248626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relationship between microbial metabolic activity and biocorrosion of carbon steel.
    Dzierzewicz Z; Cwalina B; Chodurek E; Wilczok T
    Res Microbiol; 1997 Dec; 148(9):785-93. PubMed ID: 9765862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxicity of hydrogen sulfide toward sulfate-reducing bacteria Desulfovibrio piger Vib-7.
    Kushkevych I; Dordević D; Vítězová M
    Arch Microbiol; 2019 Apr; 201(3):389-397. PubMed ID: 30707247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microcalorimetric studies of the growth of sulfate-reducing bacteria: energetics of Desulfovibrio vulgaris growth.
    Traore AS; Hatchikian CE; Belaich JP; Le Gall J
    J Bacteriol; 1981 Jan; 145(1):191-9. PubMed ID: 7462143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethanol utilization by sulfate-reducing bacteria: an experimental and modeling study.
    Nagpal S; Chuichulcherm S; Livingston A; Peeva L
    Biotechnol Bioeng; 2000 Dec; 70(5):533-43. PubMed ID: 11042550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Some observations on growth and hydrogen uptake by Desulfovibrio vulgaris.
    Khosrovi B; Macpherson R; Miller JD
    Arch Mikrobiol; 1971; 80(4):324-37. PubMed ID: 5132464
    [No Abstract]   [Full Text] [Related]  

  • 7. Can microbially-generated hydrogen sulfide account for the rates of U(VI) reduction by a sulfate-reducing bacterium?
    Boonchayaanant B; Gu B; Wang W; Ortiz ME; Criddle CS
    Biodegradation; 2010 Feb; 21(1):81-95. PubMed ID: 19597947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aerobic metabolism of carbon reserves by the "obligate anaerobe" Desulfovibrio gigas.
    Santos H; Fareleira P; Xavier AV; Chen L; Liu MY; LeGall J
    Biochem Biophys Res Commun; 1993 Sep; 195(2):551-7. PubMed ID: 8373395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of maltose by proliferating cells of Desulfovibrio desulfuricans 2198.
    Zolotukhina LM; Davydova MN; Krasilnikova EN
    Biochemistry (Mosc); 1999 Aug; 64(8):952-6. PubMed ID: 10498814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of corrosion inhibitor on adhesion of sulfate-reducing bacteria to steel and their production of exopolymer complex].
    Purishch LM; Asaulenko LH; Koptieva ZhP; Kozlova IP
    Mikrobiol Z; 2004; 66(4):78-85. PubMed ID: 15515905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction of the amount of periplasmic hydrogenase in Desulfovibrio vulgaris (Hildenborough) with antisense RNA: direct evidence for an important role of this hydrogenase in lactate metabolism.
    van den Berg WA; van Dongen WM; Veeger C
    J Bacteriol; 1991 Jun; 173(12):3688-94. PubMed ID: 1711025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Development of mono- and associative cultures of sulphate-reducing bacteria and formation of exopolymeric complex].
    Purish LM; Asaulenko LH; Ostapchuk AM
    Mikrobiol Z; 2009; 71(2):20-6. PubMed ID: 19938590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selection for novel, acid-tolerant Desulfovibrio spp. from a closed Transbaikal mine site in a temporal pH-gradient bioreactor.
    Antsiferov DV; Fyodorova TS; Kovalyova AA; Lukina A; Frank YA; Avakyan MR; Banks D; Tuovinen OH; Karnachuk OV
    Antonie Van Leeuwenhoek; 2017 Dec; 110(12):1669-1679. PubMed ID: 28748290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Carbon and energy sources of biosynthesis in sulfate reducing bacteria].
    Sorokin IuI
    Mikrobiologiia; 1966; 35(5):761-6. PubMed ID: 6002773
    [No Abstract]   [Full Text] [Related]  

  • 15. Desulfovibrio inopinatus, sp. nov., a new sulfate-reducing bacterium that degrades hydroxyhydroquinone.
    Reichenbecher W; Schink B
    Arch Microbiol; 1997 Oct; 168(4):338-44. PubMed ID: 9297472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-function relationship in hemoproteins: the role of cytochrome c3 in the reduction of colloidal sulfur by sulfate-reducing bacteria.
    Fauque G; Herve D; Le Gall J
    Arch Microbiol; 1979 Jun; 121(3):261-4. PubMed ID: 229785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source.
    Badziong W; Thauer RK; Zeikus JG
    Arch Microbiol; 1978 Jan; 116(1):41-9. PubMed ID: 623496
    [No Abstract]   [Full Text] [Related]  

  • 18. Control of biogenic H(2)S production with nitrite and molybdate.
    Nemati M; Mazutinec TJ; Jenneman GE; Voordouw G
    J Ind Microbiol Biotechnol; 2001 Jun; 26(6):350-5. PubMed ID: 11571618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A semi-continuous system for monitoring microbially influenced corrosion.
    Eid MM; Duncan KE; Tanner RS
    J Microbiol Methods; 2018 Jul; 150():55-60. PubMed ID: 29803719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon dioxide and hydrogen sulfide associations with regional bacterial diversity patterns in microbially induced concrete corrosion.
    Ling AL; Robertson CE; Harris JK; Frank DN; Kotter CV; Stevens MJ; Pace NR; Hernandez MT
    Environ Sci Technol; 2014 Jul; 48(13):7357-64. PubMed ID: 24842376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.