These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 8248626)

  • 21. [Study on constructive metabolism of sulphate reducing bacteria using C-14].
    Sorokin IuI
    Mikrobiologiia; 1966; 35(6):967-77. PubMed ID: 6003015
    [No Abstract]   [Full Text] [Related]  

  • 22. [Clinical significance of sulfate-reducing bacteria for ulcerative colitis].
    Watanabe K; Mikamo H; Tanaka K
    Nihon Rinsho; 2007 Jul; 65(7):1337-46. PubMed ID: 17642254
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Participation of sulfate reducing bacteria in copper precipitation].
    Ilialetdinov AN; Enker PB; Loginova LV
    Mikrobiologiia; 1977; 46(1):113-7. PubMed ID: 859457
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of carbon dioxide and acetate in biosynthesis by sulphate-reducing bacteria.
    Sorokin YI
    Nature; 1966 Apr; 210(5035):551-2. PubMed ID: 5960530
    [No Abstract]   [Full Text] [Related]  

  • 25. The NADP-reducing hydrogenase of Desulfovibrio fructosovorans: evidence for a native complex with hydrogen-dependent methyl-viologen-reducing activity.
    de Luca G; de Philip P; Rousset M; Belaich JP; Dermoun Z
    Biochem Biophys Res Commun; 1998 Jul; 248(3):591-6. PubMed ID: 9703971
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Studies on sulfite reduction by Desulfovibrio vulgaris.
    Domka F; Szulczyński M
    Acta Microbiol Pol; 1981; 30(3):247-53. PubMed ID: 6174026
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pyrosequencing reveals correlations between extremely acidophilic bacterial communities with hydrogen sulphide concentrations, pH and inert polymer coatings at concrete sewer crown surfaces.
    Pagaling E; Yang K; Yan T
    J Appl Microbiol; 2014 Jul; 117(1):50-64. PubMed ID: 24606006
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ATP and acetylene-reducing activity of a sulfate-reducing bacterium.
    Sekiguchi T; Noguchi A; Nosoh Y
    Can J Microbiol; 1977 May; 23(5):567-72. PubMed ID: 871967
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrogen as a substrate for methanogenesis and sulphate reduction in anaerobic saltmarsh sediment.
    Abram JW; Nedwell DB
    Arch Microbiol; 1978 Apr; 117(1):93-7. PubMed ID: 678015
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isolation of a sulfide-producing bacterial consortium from cooling-tower water: Evaluation of corrosive effects on galvanized steel.
    Ilhan-Sungur E; Ozuolmez D; Çotuk A; Cansever N; Muyzer G
    Anaerobe; 2017 Feb; 43():27-34. PubMed ID: 27871998
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Stages of biofilm formation by sulfate-reducing bacteria].
    Asaulenko LH; Purishch LM; Kozlova IP
    Mikrobiol Z; 2004; 66(3):72-9. PubMed ID: 15456221
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Solid and liquid media for isolating and cultivating acidophilic and acid-tolerant sulfate-reducing bacteria.
    Ňancucheo I; Rowe OF; Hedrich S; Johnson DB
    FEMS Microbiol Lett; 2016 May; 363(10):. PubMed ID: 27036143
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Effect of gas phase composition on formation of hydrocarbons by Desulfovibrio desulfuricans].
    Bagaeva TV
    Prikl Biokhim Mikrobiol; 2000; 36(2):195-8. PubMed ID: 10780008
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Changes in metabolic pathways of Desulfovibrio alaskensis G20 cells induced by molybdate excess.
    Nair RR; Silveira CM; Diniz MS; Almeida MG; Moura JJ; Rivas MG
    J Biol Inorg Chem; 2015 Mar; 20(2):311-22. PubMed ID: 25488518
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. II. Inhibition experiments.
    Cappenberg TE
    Antonie Van Leeuwenhoek; 1974; 40(2):297-306. PubMed ID: 4365468
    [No Abstract]   [Full Text] [Related]  

  • 36. Iron corrosion by novel anaerobic microorganisms.
    Dinh HT; Kuever J; Mussmann M; Hassel AW; Stratmann M; Widdel F
    Nature; 2004 Feb; 427(6977):829-32. PubMed ID: 14985759
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oil field souring control by nitrate-reducing Sulfurospirillum spp. that outcompete sulfate-reducing bacteria for organic electron donors.
    Hubert C; Voordouw G
    Appl Environ Microbiol; 2007 Apr; 73(8):2644-52. PubMed ID: 17308184
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Corrosion risk associated with microbial souring control using nitrate or nitrite.
    Hubert C; Nemati M; Jenneman G; Voordouw G
    Appl Microbiol Biotechnol; 2005 Aug; 68(2):272-82. PubMed ID: 15711941
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Study on dissimilatory reduction of sulphates.
    Domka F; Stawicki S; Szulczyński M
    Acta Microbiol Pol; 1979; 28(1):79-84. PubMed ID: 87119
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Marker exchange mutagenesis of the hydN genes in Desulfovibrio fructosovorans.
    Rousset M; Dermoun Z; Chippaux M; Bélaich JP
    Mol Microbiol; 1991 Jul; 5(7):1735-40. PubMed ID: 1943706
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.