These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 8249320)

  • 1. Light-induced binding of proteins to rhabdomeric membranes in the retina of crayfish (Procambarus clarkii).
    Terakita A; Tsukahara Y; Hariyama T; Seki T; Tashiro H
    Vision Res; 1993 Dec; 33(17):2421-6. PubMed ID: 8249320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mouse cone arrestin expression pattern: light induced translocation in cone photoreceptors.
    Zhu X; Li A; Brown B; Weiss ER; Osawa S; Craft CM
    Mol Vis; 2002 Dec; 8():462-71. PubMed ID: 12486395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective proteolysis of arrestin by calpain. Molecular characteristics and its effect on rhodopsin dephosphorylation.
    Azarian SM; King AJ; Hallett MA; Williams DS
    J Biol Chem; 1995 Oct; 270(41):24375-84. PubMed ID: 7592650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of arrestin 2 function in rhabdomeric photoreceptors.
    Plangger A; Malicki D; Whitney M; Paulsen R
    J Biol Chem; 1994 Oct; 269(43):26969-75. PubMed ID: 7929436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subspecies of arrestin from bovine retina. Equal functional binding to photoexcited rhodopsin but various isoelectric focusing phenotypes in individuals.
    Weyand I; Kühn H
    Eur J Biochem; 1990 Oct; 193(2):459-67. PubMed ID: 2171936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An arrestin homolog of blowfly photoreceptors stimulates visual-pigment phosphorylation by activating a membrane-associated protein kinase.
    Bentrop J; Plangger A; Paulsen R
    Eur J Biochem; 1993 Aug; 216(1):67-73. PubMed ID: 8365418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulatory arrestin cycle secures the fidelity and maintenance of the fly photoreceptor cell.
    Byk T; Bar-Yaacov M; Doza YN; Minke B; Selinger Z
    Proc Natl Acad Sci U S A; 1993 Mar; 90(5):1907-11. PubMed ID: 8446607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylated rhodopsin and heparin induce similar conformational changes in arrestin.
    Palczewski K; Pulvermüller A; Buczyłko J; Hofmann KP
    J Biol Chem; 1991 Oct; 266(28):18649-54. PubMed ID: 1917988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding of inositol phosphates to arrestin.
    Palczewski K; Pulvermüller A; Buczylko J; Gutmann C; Hofmann KP
    FEBS Lett; 1991 Dec; 295(1-3):195-9. PubMed ID: 1765153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid affinity purification of retinal arrestin (48 kDa protein) via its light-dependent binding to phosphorylated rhodopsin.
    Wilden U; Wüst E; Weyand I; Kühn H
    FEBS Lett; 1986 Oct; 207(2):292-5. PubMed ID: 3770202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short- and long-wavelength-sensitive opsins are involved in photoreception both in the retina and throughout the central nervous system of crayfish.
    Kingston AC; Cronin TW
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2015 Dec; 201(12):1137-45. PubMed ID: 26445969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic phosphopeptide from rhodopsin sequence induces retinal arrestin binding to photoactivated unphosphorylated rhodopsin.
    Puig J; Arendt A; Tomson FL; Abdulaeva G; Miller R; Hargrave PA; McDowell JH
    FEBS Lett; 1995 Apr; 362(2):185-8. PubMed ID: 7720869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monoclonal antibodies to crayfish rhodopsin. I. Biochemical characterization and cross-reactivity.
    de Couet HG; Sigmund C
    Eur J Cell Biol; 1985 Jul; 38(1):106-12. PubMed ID: 2411561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics, binding constant, and activation energy of the 48-kDa protein-rhodopsin complex by extra-metarhodopsin II.
    Schleicher A; Kühn H; Hofmann KP
    Biochemistry; 1989 Feb; 28(4):1770-5. PubMed ID: 2719933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-regulated localization of the beta-subunit of Gq-type G-protein in the crayfish photoreceptors.
    Terakita A; Takahama H; Hariyama T; Suzuki T; Tsukahara Y
    J Comp Physiol A; 1998 Oct; 183(4):411-7. PubMed ID: 9809451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation and regeneration of rhodopsin in the insect visual cycle.
    Kiselev A; Subramaniam S
    Science; 1994 Nov; 266(5189):1369-73. PubMed ID: 7973725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of phosphorylation on arrestin-rhodopsin interaction in the squid visual system.
    Robinson KA; Ou WL; Guan X; Sugamori KS; Bandyopadhyay A; Ernst OP; Mitchell J
    J Neurochem; 2015 Dec; 135(6):1129-39. PubMed ID: 26375013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light-dependent redistribution of arrestin in vertebrate rods is an energy-independent process governed by protein-protein interactions.
    Nair KS; Hanson SM; Mendez A; Gurevich EV; Kennedy MJ; Shestopalov VI; Vishnivetskiy SA; Chen J; Hurley JB; Gurevich VV; Slepak VZ
    Neuron; 2005 May; 46(4):555-67. PubMed ID: 15944125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intense-light mediated changes in rat rod outer segment lipids and proteins.
    Organisciak DT; Wang HM; Xie A; Reeves DS; Donoso LA
    Prog Clin Biol Res; 1989; 314():493-512. PubMed ID: 2558385
    [No Abstract]   [Full Text] [Related]  

  • 20. Transduction mechanisms of vertebrate and invertebrate photoreceptors.
    Yarfitz S; Hurley JB
    J Biol Chem; 1994 May; 269(20):14329-32. PubMed ID: 8182033
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.