These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 8249320)

  • 21. Light-modulated ADP-ribosylation, protein phosphorylation and protein binding in isolated fly photoreceptor membranes.
    Bentrop J; Paulsen R
    Eur J Biochem; 1986 Nov; 161(1):61-7. PubMed ID: 3780740
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ontogenetic development of S-antigen- and rod-opsin immunoreactions in retinal and pineal photoreceptors of Xenopus laevis in relation to the onset of melatonin-dependent color-change mechanisms.
    Korf B; Rollag MD; Korf HW
    Cell Tissue Res; 1989 Nov; 258(2):319-29. PubMed ID: 2531037
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of light-adaptation on the binding of 48-kDa protein (S-antigen) to photoreceptor cell membranes.
    Broekhuyse RM; Janssen AP; Tolhuizen EF
    Curr Eye Res; 1987 Apr; 6(4):607-10. PubMed ID: 3581879
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Duration and amplitude of the light-induced cGMP hydrolysis in vertebrate photoreceptors are regulated by multiple phosphorylation of rhodopsin and by arrestin binding.
    Wilden U
    Biochemistry; 1995 Jan; 34(4):1446-54. PubMed ID: 7827093
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Light-driven translocation of the protein phosphatase 2A complex regulates light/dark dephosphorylation of phosducin and rhodopsin.
    Brown BM; Carlson BL; Zhu X; Lolley RN; Craft CM
    Biochemistry; 2002 Nov; 41(46):13526-38. PubMed ID: 12427013
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid transducin deactivation in intact stacks of bovine rod outer segment disks as studied by light scattering techniques. Arrestin requires additional soluble proteins for rapid quenching of rhodopsin catalytic activity.
    Wagner R; Ryba N; Uhl R
    FEBS Lett; 1988 Aug; 235(1-2):103-8. PubMed ID: 3136032
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modulation of arrestin release in the light-driven regeneration of Rh1 Drosophila rhodopsin.
    Kiselev A; Subramaniam S
    Biochemistry; 1996 Feb; 35(6):1848-55. PubMed ID: 8639666
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interaction of GTP-binding protein Gq with photoactivated rhodopsin in the photoreceptor membranes of crayfish.
    Terakita A; Hariyama T; Tsukahara Y; Katsukura Y; Tashiro H
    FEBS Lett; 1993 Sep; 330(2):197-200. PubMed ID: 8365491
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photosensitivity spectrum of crayfish rhodopsin measured using fluorescence of metarhodopsin.
    Cronin TW; Goldsmith TH
    J Gen Physiol; 1982 Feb; 79(2):313-32. PubMed ID: 7057163
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Arrestin binding determines the rate of inactivation of the G protein-coupled receptor rhodopsin in vivo.
    Ranganathan R; Stevens CF
    Cell; 1995 Jun; 81(6):841-8. PubMed ID: 7781061
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of the carboxyl-terminal region of arrestin in binding to phosphorylated rhodopsin.
    Palczewski K; Buczyłko J; Imami NR; McDowell JH; Hargrave PA
    J Biol Chem; 1991 Aug; 266(23):15334-9. PubMed ID: 1651326
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Constitutive activation of opsin: interaction of mutants with rhodopsin kinase and arrestin.
    Rim J; Oprian DD
    Biochemistry; 1995 Sep; 34(37):11938-45. PubMed ID: 7547930
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evidence for ATP-ase activity of arrestin from bovine photoreceptors.
    Glitscher W; Rüppel H
    FEBS Lett; 1991 May; 282(2):431-5. PubMed ID: 1828040
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polarized sorting of rhodopsin on post-Golgi membranes in frog retinal photoreceptor cells.
    Deretic D; Papermaster DS
    J Cell Biol; 1991 Jun; 113(6):1281-93. PubMed ID: 1828467
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interaction of small G proteins with photoexcited rhodopsin.
    Wieland T; Ulibarri I; Aktories K; Gierschik P; Jakobs KH
    FEBS Lett; 1990 Apr; 263(2):195-8. PubMed ID: 2110532
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inactivation of photoexcited rhodopsin in retinal rods: the roles of rhodopsin kinase and 48-kDa protein (arrestin).
    Bennett N; Sitaramayya A
    Biochemistry; 1988 Mar; 27(5):1710-5. PubMed ID: 3365420
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interaction between photoactivated rhodopsin and its kinase: stability and kinetics of complex formation.
    Pulvermüller A; Palczewski K; Hofmann KP
    Biochemistry; 1993 Dec; 32(51):14082-8. PubMed ID: 8260489
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A variant of arrestin-1 binds rod outer segment membranes in a light-independent manner.
    Uzcanga GL; Becerra AR; Perdomo D; Bubis J
    Arch Biochem Biophys; 2011 Mar; 507(2):219-31. PubMed ID: 21176771
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Light-induced binding of 48-kDa protein to photoreceptor membranes is highly enhanced by phosphorylation of rhodopsin.
    Kühn H; Hall SW; Wilden U
    FEBS Lett; 1984 Oct; 176(2):473-8. PubMed ID: 6436059
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The diurnal pattern of protein and photopigment synthesis in the retina of the crayfish, Procambarus clarkii.
    Hafner GS; Tokarski TR
    J Comp Physiol A; 1988 Jun; 163(2):253-8. PubMed ID: 3404485
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.