BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 8250216)

  • 1. Quantification of subnanomolar amounts of phosphate bound to seryl and threonyl residues in phosphoproteins using alkaline hydrolysis and malachite green.
    Ekman P; Jäger O
    Anal Biochem; 1993 Oct; 214(1):138-41. PubMed ID: 8250216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The measurement of cyclic nucleotide phosphodiesterase 4 activities via the quantification of inorganic phosphate with malachite green.
    Zhu S; Gan Z; Li Z; Liu Y; Yang X; Deng P; Xie Y; Yu M; Liao H; Zhao Y; Zhao L; Liao F
    Anal Chim Acta; 2009 Mar; 636(1):105-10. PubMed ID: 19231363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of a malachite green assay for detection of ATP hydrolysis by solubilized membrane proteins.
    Repen B; Schneider E; Alexiev U
    Anal Biochem; 2012 Jul; 426(2):103-5. PubMed ID: 22507377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inorganic and organic phosphate measurements in the nanomolar range.
    Van Veldhoven PP; Mannaerts GP
    Anal Biochem; 1987 Feb; 161(1):45-8. PubMed ID: 3578786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inorganic phosphate assay with malachite green: an improvement and evaluation.
    Carter SG; Karl DW
    J Biochem Biophys Methods; 1982 Dec; 7(1):7-13. PubMed ID: 7153458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separation of phosphotyrosine, phosphoserine, and phosphothreonine by high-performance liquid chromatography.
    Ringer DP
    Methods Enzymol; 1991; 201():3-10. PubMed ID: 1719344
    [No Abstract]   [Full Text] [Related]  

  • 7. Chemical derivatization of phosphoserine and phosphothreonine containing peptides to increase sensitivity for MALDI-based analysis and for selectivity of MS/MS analysis.
    Arrigoni G; Resjö S; Levander F; Nilsson R; Degerman E; Quadroni M; Pinna LA; James P
    Proteomics; 2006 Feb; 6(3):757-66. PubMed ID: 16372258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The initial phosphate burst in ATP hydrolysis by myosin and subfragment-1 as studied by a modified malachite green method for determination of inorganic phosphate.
    Kodama T; Fukui K; Kometani K
    J Biochem; 1986 May; 99(5):1465-72. PubMed ID: 2940237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of anti-phosphoserine and anti-phosphothreonine antibodies and their application in the study of insulin- and EGF-induced phosphorylation.
    Kono S; Kuzuya H; Yamada K; Yoshimasa Y; Okamoto M; Nishimura H; Kosaki A; Inoue G; Hayashi T; Imura H
    Biochem Biophys Res Commun; 1993 Jan; 190(1):283-8. PubMed ID: 8422254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of protein phosphorylation on SDS-PAGE using probes with a phosphate-sensitive emission response.
    Riechers A; Schmidt F; Stadlbauer S; König B
    Bioconjug Chem; 2009 Apr; 20(4):804-7. PubMed ID: 19326888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly-vinyl alcohol (PVA) and malachite green: a new reagent system for the microdetermination of phosphate in water and wastewater.
    Singh K; Shukla AK
    Indian J Environ Health; 2003 Jul; 45(3):203-8. PubMed ID: 15315142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid enrichment and analysis of yeast phosphoproteins using affinity chromatography, 2D-PAGE and peptide mass fingerprinting.
    Makrantoni V; Antrobus R; Botting CH; Coote PJ
    Yeast; 2005 Apr; 22(5):401-14. PubMed ID: 15806615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An improved malachite green assay of phosphate: mechanism and application.
    Feng J; Chen Y; Pu J; Yang X; Zhang C; Zhu S; Zhao Y; Yuan Y; Yuan H; Liao F
    Anal Biochem; 2011 Feb; 409(1):144-9. PubMed ID: 20971056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A robotics-based automated assay for inorganic and organic phosphates.
    Cogan EB; Birrell GB; Griffith OH
    Anal Biochem; 1999 Jun; 271(1):29-35. PubMed ID: 10361001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput nonradioisotopic detection of picomole levels of phosphothreonine and phosphoserine containing peptides via biotinylation and enzyme-linked immunosorbent assay.
    Mahoney CW; Hosoi T; Ohashi M
    Anal Biochem; 1999 Mar; 268(2):371-6. PubMed ID: 10075828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of two phosphorylation motifs in bovine osteopontin.
    Sørensen ES; Petersen TE
    Biochem Biophys Res Commun; 1994 Jan; 198(1):200-5. PubMed ID: 8292023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simple and rapid method of quantitative analysis of phosphoamino acids by high-performance liquid chromatography.
    Morrice N; Aitken A
    Anal Biochem; 1985 Jul; 148(1):207-12. PubMed ID: 2412465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive and reliable phosphorylation site mapping of individual phosphoproteins by combination of multiple stage mass spectrometric analysis with a target-decoy database search.
    Han G; Ye M; Jiang X; Chen R; Ren J; Xue Y; Wang F; Song C; Yao X; Zou H
    Anal Chem; 2009 Jul; 81(14):5794-805. PubMed ID: 19522514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Array-based fluorescence assay for serine/threonine kinases using specific chemical reaction.
    Akita S; Umezawa N; Kato N; Higuchi T
    Bioorg Med Chem; 2008 Aug; 16(16):7788-94. PubMed ID: 18656369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adenosine 3',5'-cyclic monophosphate/vanadate-sensitive phosphorylation of DARPP-32- and inhibitor-1-immunoreactive proteins.
    Edgar MA; Dokas LA
    Recept Signal Transduct; 1997; 7(1):13-28. PubMed ID: 9285528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.