BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 825043)

  • 61. Mechanism of pyrite dissolution in the presence of Thiobacillus ferrooxidans.
    Fowler TA; Holmes PR; Crundwell FK
    Appl Environ Microbiol; 1999 Jul; 65(7):2987-93. PubMed ID: 10388693
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Whole-genome sequencing reveals novel insights into sulfur oxidation in the extremophile Acidithiobacillus thiooxidans.
    Yin H; Zhang X; Li X; He Z; Liang Y; Guo X; Hu Q; Xiao Y; Cong J; Ma L; Niu J; Liu X
    BMC Microbiol; 2014 Jul; 14():179. PubMed ID: 24993543
    [TBL] [Abstract][Full Text] [Related]  

  • 63. [Dependence of the rate of ferrous oxide oxidation by a Thiobacillus ferrooxidans culture on its concentration].
    Kovrov BG; Denisov GV; Sekacheva LG
    Mikrobiologiia; 1978; 47(3):400-2. PubMed ID: 672678
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Heterotrophic bacteria from cultures of autotrophic Thiobacillus ferrooxidans: relationships as studied by means of deoxyribonucleic acid homology.
    Harrison AP; Jarvis BW; Johnson JL
    J Bacteriol; 1980 Jul; 143(1):448-54. PubMed ID: 7400100
    [TBL] [Abstract][Full Text] [Related]  

  • 65. [Thiobacillus ferrooxidans pili].
    Gromova LA; Pereverzev NA; Karavaĭko GI
    Mikrobiologiia; 1978; 47(2):293-5. PubMed ID: 661638
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A novel regeneration of iron citrate solution by biooxidation of iron-oxidizing bacteria.
    Wang YJ; Li DP; Liu C; Zhan GQ; He XH
    J Ind Microbiol Biotechnol; 2014 Nov; 41(11):1725-9. PubMed ID: 25242290
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Marine acidophilic sulfur-oxidizing bacterium requiring salts for the oxidation of reduced inorganic sulfur compounds.
    Kamimura K; Higashino E; Moriya S; Sugio T
    Extremophiles; 2003 Apr; 7(2):95-9. PubMed ID: 12664261
    [TBL] [Abstract][Full Text] [Related]  

  • 68. First evidence for existence of an uphill electron transfer through the bc(1) and NADH-Q oxidoreductase complexes of the acidophilic obligate chemolithotrophic ferrous ion-oxidizing bacterium Thiobacillus ferrooxidans.
    Elbehti A; Brasseur G; Lemesle-Meunier D
    J Bacteriol; 2000 Jun; 182(12):3602-6. PubMed ID: 10852897
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Effect of anions on selective solubilization of zinc and copper in bacterial leaching of sulfide ores.
    Harahuc L; Lizama HM; Suzuki I
    Biotechnol Bioeng; 2000 Jul; 69(2):196-203. PubMed ID: 10861398
    [TBL] [Abstract][Full Text] [Related]  

  • 70. New medium for isolating iron-oxidizing and heterotrophic acidophilic bacteria from acid mine drainage.
    Manning HL
    Appl Microbiol; 1975 Dec; 30(6):1010-6. PubMed ID: 2103
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Cytochromes in anaerobic growth of Acidithiobacillus ferrooxidans.
    Norris PR; Laigle L; Slade S
    Microbiology (Reading); 2018 Mar; 164(3):383-394. PubMed ID: 29458663
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Dispersion of sulfur creates a valuable new growth medium formulation that enables earlier sulfur oxidation in relation to iron oxidation in Acidithiobacillus ferrooxidans cultures.
    Inaba Y; Kernan T; West AC; Banta S
    Biotechnol Bioeng; 2021 Aug; 118(8):3225-3238. PubMed ID: 34086346
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The respiratory chain of Thiobacillus ferrooxidans: the reduction of cytochromes by Fe2+ and the preliminary characterization of rusticyanin a novel "blue" copper protein.
    Cobley JG; Haddock BA
    FEBS Lett; 1975 Dec; 60(1):29-33. PubMed ID: 6319
    [No Abstract]   [Full Text] [Related]  

  • 74. [Leptospirillum-like bacteria and their role in pyrite oxidation].
    Vardanian NS; Akopian VP
    Mikrobiologiia; 2003; 72(4):493-7. PubMed ID: 14526539
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Isolation and characterization of Acidicaldus organivorus, gen. nov., sp. nov.: a novel sulfur-oxidizing, ferric iron-reducing thermo-acidophilic heterotrophic Proteobacterium.
    Johnson DB; Stallwood B; Kimura S; Hallberg KB
    Arch Microbiol; 2006 Apr; 185(3):212-21. PubMed ID: 16432746
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Phosphorylation and carbon dioxide fixation in the autotrophic bacterium, Thiobacillus thiooxidans.
    UMBREIT WW
    J Bacteriol; 1954 Apr; 67(4):387-93. PubMed ID: 13152048
    [No Abstract]   [Full Text] [Related]  

  • 77. Characterization of sulfur oxidizing bacteria related to biogenic sulfuric acid corrosion in sludge digesters.
    Huber B; Herzog B; Drewes JE; Koch K; Müller E
    BMC Microbiol; 2016 Jul; 16(1):153. PubMed ID: 27430211
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Effect of uncouplers on endogenous respiration and ferrous iron oxidation in a chemolithoautotrophic bacterium Acidithiobacillus (Thiobacillus) ferrooxidans.
    Chen Y; Suzuki I
    FEMS Microbiol Lett; 2004 Aug; 237(1):139-45. PubMed ID: 15268949
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Comparison of quantitative analytical methods in evaluating acidophilic iron- and sulphur-oxidizing microorganisms liquid cultures.
    Lorenzo P; de Silóniz MI; Perera J
    Microbiologia; 1991 Jun; 7(1):53-6. PubMed ID: 1867779
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Stoichiometric modeling of oxidation of reduced inorganic sulfur compounds (Riscs) in Acidithiobacillus thiooxidans.
    Bobadilla Fazzini RA; Cortés MP; Padilla L; Maturana D; Budinich M; Maass A; Parada P
    Biotechnol Bioeng; 2013 Aug; 110(8):2242-51. PubMed ID: 23436458
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.