These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 8250555)
1. Mobile bacteria and transport of polynuclear aromatic hydrocarbons in porous media. Jenkins MB; Lion LW Appl Environ Microbiol; 1993 Oct; 59(10):3306-13. PubMed ID: 8250555 [TBL] [Abstract][Full Text] [Related]
2. Methanotrophic bacteria and facilitated transport of pollutants in aquifer material. Jenkins MB; Chen JH; Kadner DJ; Lion LW Appl Environ Microbiol; 1994 Oct; 60(10):3491-8. PubMed ID: 16349401 [TBL] [Abstract][Full Text] [Related]
3. Effects of biosurfactant-producing bacteria on biodegradation and transport of phenanthrene in subsurface soil. Chang JS; Cha DK; Radosevich M; Jin Y J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(6):611-6. PubMed ID: 25837563 [TBL] [Abstract][Full Text] [Related]
4. Isolation of soil bacteria adapted to degrade humic acid-sorbed phenanthrene. Vacca DJ; Bleam WF; Hickey WJ Appl Environ Microbiol; 2005 Jul; 71(7):3797-805. PubMed ID: 16000791 [TBL] [Abstract][Full Text] [Related]
5. Temporal change in culturable phenanthrene degraders in response to long-term exposure to phenanthrene in a soil column system. Bodour AA; Wang JM; Brusseau ML; Maier RM Environ Microbiol; 2003 Oct; 5(10):888-95. PubMed ID: 14510842 [TBL] [Abstract][Full Text] [Related]
6. Diversity of organotrophic bacteria, activity of dehydrogenases and urease as well as seed germination and root growth Lepidium sativum, Sorghum saccharatum and Sinapis alba under the influence of polycyclic aromatic hydrocarbons. Lipińska A; Wyszkowska J; Kucharski J Environ Sci Pollut Res Int; 2015 Dec; 22(23):18519-30. PubMed ID: 26341339 [TBL] [Abstract][Full Text] [Related]
7. Differential degradation of polycyclic aromatic hydrocarbon mixtures by indigenous microbial assemblages in soil. Sawulski P; Boots B; Clipson N; Doyle E Lett Appl Microbiol; 2015 Aug; 61(2):199-207. PubMed ID: 26031321 [TBL] [Abstract][Full Text] [Related]
8. Characteristics of phenanthrene-degrading bacteria isolated from soils contaminated with polycyclic aromatic hydrocarbons. Aitken MD; Stringfellow WT; Nagel RD; Kazunga C; Chen SH Can J Microbiol; 1998 Aug; 44(8):743-52. PubMed ID: 9830104 [TBL] [Abstract][Full Text] [Related]
9. [Sorption of Phenanthrene to Soybean and Wheat Roots and the Bioavailability of Sorbed Phenanthrene]. Wang HJ; Li QQ; Shen Y; Gu RC; Sheng Y; Zhan XH Huan Jing Ke Xue; 2017 Jun; 38(6):2561-2567. PubMed ID: 29965378 [TBL] [Abstract][Full Text] [Related]
10. Effect of model sorptive phases on phenanthrene biodegradation: molecular analysis of enrichments and isolates suggests selection based on bioavailability. Friedrich M; Grosser RJ; Kern EA; Inskeep WP; Ward DM Appl Environ Microbiol; 2000 Jul; 66(7):2703-10. PubMed ID: 10877758 [TBL] [Abstract][Full Text] [Related]
11. Uptake and accumulation of phenanthrene and pyrene in spiked soils by Ryegrass (Lolium perenne L.). Xu SY; Chen YX; Lin Q; Wu WX; Xue SG; Shen CF J Environ Sci (China); 2005; 17(5):817-22. PubMed ID: 16313010 [TBL] [Abstract][Full Text] [Related]
12. Effect of model sorptive phases on phenanthrene biodegradation: different enrichment conditions influence bioavailability and selection of phenanthrene-degrading isolates. Grosser RJ; Friedrich M; Ward DM; Inskeep WP Appl Environ Microbiol; 2000 Jul; 66(7):2695-702. PubMed ID: 10877757 [TBL] [Abstract][Full Text] [Related]
13. Glomalin-related soil protein enhances the sorption of polycyclic aromatic hydrocarbons on cation-modified montmorillonite. Chen S; Sheng X; Qin C; Waigi MG; Gao Y Environ Int; 2019 Nov; 132():105093. PubMed ID: 31470216 [TBL] [Abstract][Full Text] [Related]
14. Effects of surfactants on extraction of phenanthrene in spiked sand. Chang MC; Huang CR; Shu HY Chemosphere; 2000 Oct; 41(8):1295-300. PubMed ID: 10901261 [TBL] [Abstract][Full Text] [Related]
15. Biodegradation during contaminant transport in porous media: 7. Impact of multiple-degrader community dynamics. Wang JM; Patterson B; Bodour A; Maier RM; Brusseau ML Environ Toxicol Chem; 2005 Nov; 24(11):2806-11. PubMed ID: 16398116 [TBL] [Abstract][Full Text] [Related]
16. Bacterial communities and enzyme activities of PAHs polluted soils. Andreoni V; Cavalca L; Rao MA; Nocerino G; Bernasconi S; Dell'Amico E; Colombo M; Gianfreda L Chemosphere; 2004 Nov; 57(5):401-12. PubMed ID: 15331267 [TBL] [Abstract][Full Text] [Related]
17. Biotransformation of polycyclic aromatic hydrocarbons by yeasts isolated from coastal sediments. MacGillivray AR; Shiaris MP Appl Environ Microbiol; 1993 May; 59(5):1613-8. PubMed ID: 8517753 [TBL] [Abstract][Full Text] [Related]
18. Effect of amphiphilic polyurethane nanoparticles on sorption-desorption of phenanthrene in aquifer material. Kim JY; Shim SB; Shim JK J Hazard Mater; 2003 Mar; 98(1-3):145-60. PubMed ID: 12628783 [TBL] [Abstract][Full Text] [Related]
19. Phenanthrene degradation in soils co-inoculated with phenanthrene-degrading and biosurfactant-producing bacteria. Dean SM; Jin Y; Cha DK; Wilson SV; Radosevich M J Environ Qual; 2001; 30(4):1126-33. PubMed ID: 11476488 [TBL] [Abstract][Full Text] [Related]
20. PAH degradation capacity of soil microbial communities--does it depend on PAH exposure? Johnsen AR; Karlson U Microb Ecol; 2005 Nov; 50(4):488-95. PubMed ID: 16328660 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]