These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 8250564)

  • 1. Metabolism of chlorinated guaiacols by a guaiacol-degrading Acinetobacter junii strain.
    González B; Acevedo C; Brezny R; Joyce T
    Appl Environ Microbiol; 1993 Oct; 59(10):3424-9. PubMed ID: 8250564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutualistic degradation of the lignin model compound veratrylglycerol-beta-(o-methoxyphenyl) ether by bacteria.
    Crawford RL
    Can J Microbiol; 1975 Oct; 21(10):1654-7. PubMed ID: 1201511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydroxylation and dechlorination of chlorinated guaiacols and syringols by Rhodococcus chlorophenolicus.
    Häggblom MM; Apajalahti JH; Salkinoja-Salonen MS
    Appl Environ Microbiol; 1988 Mar; 54(3):683-7. PubMed ID: 3377490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of alkylguaiacol-degrading cytochromes P450 for the biocatalytic valorization of lignin.
    Fetherolf MM; Levy-Booth DJ; Navas LE; Liu J; Grigg JC; Wilson A; Katahira R; Beckham GT; Mohn WW; Eltis LD
    Proc Natl Acad Sci U S A; 2020 Oct; 117(41):25771-25778. PubMed ID: 32989155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation and O-methylation of chlorinated phenolic compounds by Rhodococcus and Mycobacterium strains.
    Häggblom MM; Nohynek LJ; Salkinoja-Salonen MS
    Appl Environ Microbiol; 1988 Dec; 54(12):3043-52. PubMed ID: 3223768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transformations of chloroguaiacols, chloroveratroles, and chlorocatechols by stable consortia of anaerobic bacteria.
    Neilson AH; Allard AS; Lindgren C; Remberger M
    Appl Environ Microbiol; 1987 Oct; 53(10):2511-9. PubMed ID: 3426218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial removal of chlorinated phenols during aerobic treatment of effluents from radiata pine kraft pulps bleached with chlorine-based chemicals, with or without hemicellulases.
    Céspedes R; Maturana A; Bumann U; Bronfman M; González B
    Appl Microbiol Biotechnol; 1996 Dec; 46(5-6):631-7. PubMed ID: 9008893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detoxication disturbances and uncoupling effects in vitro of some chlorinated guaiacols, catechols and benzoquinones.
    Lundberg P; Renberg L; Arrhenius E; Sundström G
    Chem Biol Interact; 1980 Nov; 32(3):281-90. PubMed ID: 7428119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of labelled lignins and veratrylglycerol-beta-guaiacyl ether by Acinetobacter sp.
    Vasudevan N; Mahadevan A
    Ital J Biochem; 1990; 39(5):285-93. PubMed ID: 2128084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of 4,5-dichloroguaiacol by soil microorganisms.
    González B; Brezny R; Herrera M; Joyce TW
    World J Microbiol Biotechnol; 1995 Sep; 11(5):536-40. PubMed ID: 24414909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial methylation of chlorinated phenols and guaiacols: formation of veratroles from guaiacols and high-molecular-weight chlorinated lignin.
    Neilson AH; Allard AS; Hynning PA; Remberger M; Landner L
    Appl Environ Microbiol; 1983 Mar; 45(3):774-83. PubMed ID: 16346242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enrichment, isolation and characterization of pentachlorophenol degrading bacterium Acinetobacter sp. ISTPCP-3 from effluent discharge site.
    Sharma A; Thakur IS; Dureja P
    Biodegradation; 2009 Sep; 20(5):643-50. PubMed ID: 19214760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of non-phenolic beta-o-4 lignin substructure model compounds by Acinetobacter sp.
    Vasudevan N; Mahadevan A
    Res Microbiol; 1992; 143(3):333-9. PubMed ID: 1448618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid degradation of ferulic acid via 4-vinylguaiacol and vanillin by a newly isolated strain of bacillus coagulans.
    Karmakar B; Vohra RM; Nandanwar H; Sharma P; Gupta KG; Sobti RC
    J Biotechnol; 2000 Jul; 80(3):195-202. PubMed ID: 10949310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the cytotoxicity and interaction of lead with lead resistant bacterium Acinetobacter junii Pb1.
    Singh PK; Kushwaha A; Hans N; Gautam A; Rani R
    Braz J Microbiol; 2019 Jan; 50(1):223-230. PubMed ID: 30637583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microcalorimetric investigation of the toxic action of pyrene on the growth of PAH-degrading bacteria Acinetobacter junii.
    Chen Y; Yao J; Chen K; Wang F; Zhou Y; Chen H; Gai N; Ceccanti B; Trebse P; Zaray G; Choi MM; Wong MH
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(6):668-73. PubMed ID: 20390914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isomer specific syntheses of chlorinated catechols and guaiacols relevant to pulp bleaching.
    McKague AB; Taylor DR
    Chemosphere; 2001 Oct; 45(3):261-7. PubMed ID: 11592414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transformation of chlorinated phenolic compounds in the genusRhodococcus.
    Häggblom MM; Janke D; Salkinoja-Salonen MS
    Microb Ecol; 1989 Sep; 18(2):147-59. PubMed ID: 24196130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dechlorination of chlorocatechols by stable enrichment cultures of anaerobic bacteria.
    Allard AS; Hynning PA; Lindgren C; Remberger M; Neilson AH
    Appl Environ Microbiol; 1991 Jan; 57(1):77-84. PubMed ID: 16348405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chlorophenols, chlorocatechols and chloroguaiacols induce DNA base oxidation in human lymphocytes (in vitro).
    Michałowicz J; Majsterek I
    Toxicology; 2010 Feb; 268(3):171-5. PubMed ID: 20025924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.