BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 8250568)

  • 1. Possible initial steps in the catabolism of 1,2-diphenylethanone (deoxybenzoin) by Pseudomonas fluorescens DB-5.
    Hinrichsen P; Vicuña R
    Appl Environ Microbiol; 1993 Oct; 59(10):3477-9. PubMed ID: 8250568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of diarylethane structures by Pseudomonas fluorescens biovar I.
    González B; Olave I; Calderón I; Vicuña R
    Arch Microbiol; 1988; 149(5):389-94. PubMed ID: 3132905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolism and biochemical pathway of n-butyl benzyl phthalate by Pseudomonas fluorescens B-1 isolated from a mangrove sediment.
    Xu XR; Li HB; Gu JD
    Ecotoxicol Environ Saf; 2007 Nov; 68(3):379-85. PubMed ID: 17296224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel degradative pathway of 2-nitrobenzoate via 3-hydroxyanthranilate in Pseudomonas fluorescens strain KU-7.
    Hasegawa Y; Muraki T; Tokuyama T; Iwaki H; Tatsuno M; Lau PC
    FEMS Microbiol Lett; 2000 Sep; 190(2):185-90. PubMed ID: 11034277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of n-butyl benzyl phthalate degradation by a pure bacterial culture from the mangrove sediment.
    Xu XR; Li HB; Gu JD; Li XY
    J Hazard Mater; 2007 Feb; 140(1-2):194-9. PubMed ID: 16876944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolism of volatile chlorinated aliphatic hydrocarbons by Pseudomonas fluorescens.
    Vandenbergh PA; Kunka BS
    Appl Environ Microbiol; 1988 Oct; 54(10):2578-9. PubMed ID: 3144246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of the biodegradation of naphthalene by a microorganism isolated from petroleum contaminated soil.
    Martin A; Sivagurunathan M
    Commun Agric Appl Biol Sci; 2003; 68(2 Pt A):175-8. PubMed ID: 15296156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of 3,4-dichloro- and 3,4-difluoroaniline by Pseudomonas fluorescens 26-K.
    Travkin VM; Solyanikova IP; Rietjens IM; Vervoort J; van Berkel WJ; Golovleva LA
    J Environ Sci Health B; 2003 Mar; 38(2):121-32. PubMed ID: 12617551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic investigations on the biodegradation and viscosity reduction of long chain hydrocarbons using Pseudomonas aeruginosa and Pseudomonas fluorescens.
    Sakthipriya N; Doble M; Sangwai JS
    Environ Sci Process Impacts; 2016 Mar; 18(3):386-97. PubMed ID: 26875795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intramolecular Benzoin Reaction Catalyzed by Benzaldehyde Lyase from Pseudomonas Fluorescens Biovar I.
    Hernández K; Parella T; Petrillo G; Usón I; Wandtke CM; Joglar J; Bujons J; Clapés P
    Angew Chem Int Ed Engl; 2017 May; 56(19):5304-5307. PubMed ID: 28387004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradation of didecyldimethylammonium chloride by Pseudomonas fluorescens TN4 isolated from activated sludge.
    Nishihara T; Okamoto T; Nishiyama N
    J Appl Microbiol; 2000 Apr; 88(4):641-7. PubMed ID: 10792522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial conversion of fungicide vinclozolin.
    Golovleva LA; Finkelstein ZI; Polyakova AV; Baskunov BP; Nefedova MYu
    J Environ Sci Health B; 1991 Jun; 26(3):293-307. PubMed ID: 1910065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of humic fractions and clay on biodegradation of phenanthrene by a Pseudomonas fluorescens strain isolated from soil.
    Ortega-Calvo JJ; Saiz-Jimenez C
    Appl Environ Microbiol; 1998 Aug; 64(8):3123-6. PubMed ID: 9687489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Naphthalene uptake by a Pseudomonas fluorescens isolate.
    Whitman BE; Lueking DR; Mihelcic JR
    Can J Microbiol; 1998 Nov; 44(11):1086-93. PubMed ID: 10030003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism of ferulic acid via vanillin using a novel CoA-dependent pathway in a newly-isolated strain of Pseudomonas fluorescens.
    Narbad A; Gasson MJ
    Microbiology (Reading); 1998 May; 144 ( Pt 5)():1397-1405. PubMed ID: 9611814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradation of phenol by bacterial strains from petroleum-refining wastewater purification plant.
    Pakuła A; Bieszkiewicz E; Boszczyk-Maleszak H; Mycielski R
    Acta Microbiol Pol; 1999; 48(4):373-80. PubMed ID: 10756720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The destruction of cyanides and their metal complexes by natural bacterial trains].
    Garbara SV; Ul'berg ZR; Grishchenko NI; Podol'skaia VI
    Mikrobiol Zh (1978); 1992; 54(3):44-8. PubMed ID: 1435357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of aldrin, dieldrin, heptachlor, and heptachlor epoxide using activated carbon and/or Pseudomonas fluorescens free cell cultures.
    Bandala ER; Andres-Octaviano J; Pastrana P; Torres LG
    J Environ Sci Health B; 2006; 41(5):553-69. PubMed ID: 16785166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of poly(3-hydroxyoctanoic acid) [P(3HO)] by bacteria: purification and properties of a P(3HO) depolymerase from Pseudomonas fluorescens GK13.
    Schirmer A; Jendrossek D; Schlegel HG
    Appl Environ Microbiol; 1993 Apr; 59(4):1220-7. PubMed ID: 8476295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradation of oxadiazon by a soil isolated Pseudomonas fluorescens strain CG5: Implementation in an herbicide removal reactor and modelling.
    Garbi C; Casasús L; Martinez-Alvarez R; Ignacio Robla J; Martín M
    Water Res; 2006 Mar; 40(6):1217-23. PubMed ID: 16516265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.