These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. The contribution of reflex inhibition to arthrogenous muscle weakness. Stokes M; Young A Clin Sci (Lond); 1984 Jul; 67(1):7-14. PubMed ID: 6375939 [No Abstract] [Full Text] [Related]
4. Declining inhibition elicited in cat lumbar motoneurons by repetitive stimulation of group II muscle afferents. Lafleur J; Zytnicki D; Horcholle-Bossavit G; Jami L J Neurophysiol; 1993 Nov; 70(5):1805-10. PubMed ID: 8294955 [TBL] [Abstract][Full Text] [Related]
5. Neural adaptations to resistive exercise: mechanisms and recommendations for training practices. Gabriel DA; Kamen G; Frost G Sports Med; 2006; 36(2):133-49. PubMed ID: 16464122 [TBL] [Abstract][Full Text] [Related]
6. Declining inhibition in ipsi- and contralateral lumbar motoneurons during contractions of an ankle extensor muscle in the cat. Lafleur J; Zytnicki D; Horcholle-Bossavit G; Jami L J Neurophysiol; 1993 Nov; 70(5):1797-804. PubMed ID: 8294954 [TBL] [Abstract][Full Text] [Related]
7. Study of orthodromic and antidromic effects of nerve stimulation on single motoneurones of human hand muscles. Person RS; Kozhina GV Electromyogr Clin Neurophysiol; 1978; 18(6):437-56. PubMed ID: 743932 [No Abstract] [Full Text] [Related]
8. Non-nociceptive upper limb afferents modulate masseter muscle EMG activity in man. Deriu F; Milia M; Sau G; Podda MV; Ortu E; Chessa G; Aiello I; Tolu E Exp Brain Res; 2002 Apr; 143(3):286-94. PubMed ID: 11889506 [TBL] [Abstract][Full Text] [Related]
9. Inhibitory mechanisms following electrical stimulation of tendon and cutaneous afferents in the lower limb. Khan SI; Burne JA Brain Res; 2010 Jan; 1308():47-57. PubMed ID: 19850015 [TBL] [Abstract][Full Text] [Related]
10. Modulation of recurrent inhibition from knee extensors to ankle motoneurones during human walking. Lamy JC; Iglesias C; Lackmy A; Nielsen JB; Katz R; Marchand-Pauvert V J Physiol; 2008 Dec; 586(24):5931-46. PubMed ID: 18936080 [TBL] [Abstract][Full Text] [Related]
11. Reduction of Ib autogenetic inhibition in motoneurons during contractions of an ankle extensor muscle in the cat. Zytnicki D; Lafleur J; Horcholle-Bossavit G; Lamy F; Jami L J Neurophysiol; 1990 Nov; 64(5):1380-9. PubMed ID: 2283534 [TBL] [Abstract][Full Text] [Related]
13. [Muscle training by electrostimulation]. Magyarosy I; Schnizer W Fortschr Med; 1990 Mar; 108(7):121-4. PubMed ID: 2182488 [TBL] [Abstract][Full Text] [Related]
14. Alteration in the force and fatigability of skeletal muscle in quadriplegic humans following exercise induced by chronic electrical stimulation. Peckham PH; Mortimer JT; Marsolais EB Clin Orthop Relat Res; 1976; (114):326-33. PubMed ID: 1083324 [TBL] [Abstract][Full Text] [Related]
15. The reflex effects of nonnoxious sural nerve stimulation on human triceps surae motor neurons. Kukulka CG J Neurophysiol; 1994 May; 71(5):1897-906. PubMed ID: 8064355 [TBL] [Abstract][Full Text] [Related]
16. Relation Between the Frequency of Short-Pulse Electrical Stimulation of Afferent Nerve Fibers and Evoked Muscle Force. Dideriksen J; Leerskov K; Czyzewska M; Rasmussen R IEEE Trans Biomed Eng; 2017 Nov; 64(11):2737-2745. PubMed ID: 28237919 [No Abstract] [Full Text] [Related]
17. Experimental muscle pain decreases voluntary EMG activity but does not affect the muscle potential evoked by transcutaneous electrical stimulation. Farina D; Arendt-Nielsen L; Graven-Nielsen T Clin Neurophysiol; 2005 Jul; 116(7):1558-65. PubMed ID: 15907396 [TBL] [Abstract][Full Text] [Related]
18. Physiological recruitment of motor units by high-frequency electrical stimulation of afferent pathways. Dideriksen JL; Muceli S; Dosen S; Laine CM; Farina D J Appl Physiol (1985); 2015 Feb; 118(3):365-76. PubMed ID: 25477350 [TBL] [Abstract][Full Text] [Related]