These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 8250961)
1. Substrate stereoselectivity and enantiomer/enantiomer interaction in propranolol metabolism in rat liver microsomes. Masubuchi Y; Yamamoto LA; Uesaka M; Fujita S; Narimatsu S; Suzuki T Biochem Pharmacol; 1993 Nov; 46(10):1759-65. PubMed ID: 8250961 [TBL] [Abstract][Full Text] [Related]
2. Propranolol oxidation by human liver microsomes--the use of cumene hydroperoxide to probe isoenzyme specificity and regio- and stereoselectivity. Otton SV; Gillam EM; Lennard MS; Tucker GT; Woods HF Br J Clin Pharmacol; 1990 Nov; 30(5):751-60. PubMed ID: 2271375 [TBL] [Abstract][Full Text] [Related]
3. Regio- and stereoselectivity in propranolol metabolism by dog liver microsomes and the expressed dog CYP2D15. Tasaki T; Iwata H; Kazusaka A; Fujita S J Biochem; 1998 Apr; 123(4):747-51. PubMed ID: 9538270 [TBL] [Abstract][Full Text] [Related]
4. Identification of human CYP isoforms involved in the metabolism of propranolol enantiomers--N-desisopropylation is mediated mainly by CYP1A2. Yoshimoto K; Echizen H; Chiba K; Tani M; Ishizaki T Br J Clin Pharmacol; 1995 Apr; 39(4):421-31. PubMed ID: 7640150 [TBL] [Abstract][Full Text] [Related]
5. Regioselective contribution of the cytochrome P-450 2D subfamily to propranolol metabolism in rat liver microsomes. Masubuchi Y; Kagimoto N; Narimatsu S; Fujita S; Suzuki T Drug Metab Dispos; 1993; 21(6):1012-6. PubMed ID: 7905378 [TBL] [Abstract][Full Text] [Related]
6. Kinetic analysis of mutual metabolic inhibition of lidocaine and propranolol in rat liver microsomes. Suzuki T; Ishida R; Matsui S; Masubuchi Y; Narimatzu S Biochem Pharmacol; 1993 Apr; 45(7):1528-30. PubMed ID: 8471076 [TBL] [Abstract][Full Text] [Related]
7. Regio- and stereoselective propranolol metabolism by 15 forms of purified cytochromes P-450 from rat liver. Fujita S; Umeda S; Funae Y; Imaoka S; Abe H; Ishida R; Adachi T; Masuda M; Kazusaka A; Suzuki T J Pharmacol Exp Ther; 1993 Jan; 264(1):226-33. PubMed ID: 8423527 [TBL] [Abstract][Full Text] [Related]
9. Species difference in enantioselectivity for the oxidation of propranolol by cytochrome P450 2D enzymes. Narimatsu S; Kobayashi N; Masubuchi Y; Horie T; Kakegawa T; Kobayashi H; Hardwick JP; Gonzalez FJ; Shimada N; Ohmori S; Kitada M; Asaoka K; Kataoka H; Yamamoto S; Satoh T Chem Biol Interact; 2000 Jun; 127(1):73-90. PubMed ID: 10903420 [TBL] [Abstract][Full Text] [Related]
10. Stereoselectivity and interaction between the glucuronidation of S-(-)- and R-(+)-propranolol in rat hepatic microsomes pretreated with different inducers. Luan LJ; Shao Q; Zeng S Pharmazie; 2005 Mar; 60(3):221-4. PubMed ID: 15801678 [TBL] [Abstract][Full Text] [Related]
11. (S)-4'-hydroxypropranolol causes product inhibition and dose-dependent bioavailability of propranolol enantiomers in the isolated perfused rat liver and in rat liver microsomes. Nand RA; Ghabrial H; Smallwood RA; Morgan DJ Xenobiotica; 1996 Dec; 26(12):1249-61. PubMed ID: 9004455 [TBL] [Abstract][Full Text] [Related]
12. Inactivation of rat cytochrome P450 2D enzyme by a further metabolite of 4-hydroxypropranolol, the major and active metabolite of propranolol. Narimatsu S; Arai T; Masubuchi Y; Horie T; Hosokawa M; Ueno K; Kataoka H; Yamamoto S; Ishikawa T; Cho AK Biol Pharm Bull; 2001 Sep; 24(9):988-94. PubMed ID: 11558582 [TBL] [Abstract][Full Text] [Related]
13. Metabolic kinetics of pseudoracemic propranolol in human liver microsomes. Enantioselectivity and quinidine inhibition. Marathe PH; Shen DD; Nelson WL Drug Metab Dispos; 1994; 22(2):237-47. PubMed ID: 8013280 [TBL] [Abstract][Full Text] [Related]
14. Development of a high-performance liquid chromatographic method for the analysis of enatiomer/enantiomer interaction in oxidative metabolism of bunitrolol in rat liver microsomes. Narimatsu S; Huang Y; Mizukami T; Masubuchi Y; Suzuki T Anal Biochem; 1994 Oct; 222(1):256-61. PubMed ID: 7856858 [TBL] [Abstract][Full Text] [Related]
15. Cytochrome P450 isozymes involved in propranolol metabolism in human liver microsomes. The role of CYP2D6 as ring-hydroxylase and CYP1A2 as N-desisopropylase. Masubuchi Y; Hosokawa S; Horie T; Suzuki T; Ohmori S; Kitada M; Narimatsu S Drug Metab Dispos; 1994; 22(6):909-15. PubMed ID: 7895609 [TBL] [Abstract][Full Text] [Related]
16. Human liver microsomal metabolism of the enantiomers of warfarin and acenocoumarol: P450 isozyme diversity determines the differences in their pharmacokinetics. Hermans JJ; Thijssen HH Br J Pharmacol; 1993 Sep; 110(1):482-90. PubMed ID: 8220911 [TBL] [Abstract][Full Text] [Related]
17. Chemical and stereochemical aspects of propranolol metabolism. Diastereomeric 1-(1-hydroxy-2-propylamino)-3-(1-naphthoxy)-2-propanols produced by rat liver microsomal omega-hydroxylation. Shetty HU; Nelson WL J Med Chem; 1986 Oct; 29(10):2004-8. PubMed ID: 3761318 [TBL] [Abstract][Full Text] [Related]
18. Enantiomer/enantiomer interactions between the S- and R- isomers of omeprazole in human cytochrome P450 enzymes: major role of CYP2C19 and CYP3A4. Li XQ; Weidolf L; Simonsson R; Andersson TB J Pharmacol Exp Ther; 2005 Nov; 315(2):777-87. PubMed ID: 16093273 [TBL] [Abstract][Full Text] [Related]
19. Stereoselective metabolism of cibenzoline, an antiarrhythmic drug, by human and rat liver microsomes: possible involvement of CYP2D and CYP3A. Niwa T; Shiraga T; Mitani Y; Terakawa M; Tokuma Y; Kagayama A Drug Metab Dispos; 2000 Sep; 28(9):1128-34. PubMed ID: 10950860 [TBL] [Abstract][Full Text] [Related]
20. Prominent but reverse stereoselectivity in propranolol glucuronidation by human UDP-glucuronosyltransferases 1A9 and 1A10. Sten T; Qvisen S; Uutela P; Luukkanen L; Kostiainen R; Finel M Drug Metab Dispos; 2006 Sep; 34(9):1488-94. PubMed ID: 16763014 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]