These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 825117)
41. Mechanism of polyadenylate-polyuridylate synthesis by RNA polymerase holoenzyme II of Escherichia coli. Iwakura Y J Biochem; 1976 Jan; 79(1):61-8. PubMed ID: 780349 [TBL] [Abstract][Full Text] [Related]
42. Matrix activity of the X chromosomes of male and female drosophilas in the synthesis of RNA by bacterial RNA-polymerase. Leibovich BA; Khesin RB Mol Biol; 1974 Nov; 8(3):374-81. PubMed ID: 4215955 [No Abstract] [Full Text] [Related]
44. [Role of RNA-polymerase in gene activity regulation of E. coli RNA-polymerase mutants with a pleiotropic effect. I. Physiological and biochemical studies]. Kamzolova SG; Arutiunian AV; Ozolin' ON; Oganesian MG Mol Biol (Mosk); 1979; 13(3):681-9. PubMed ID: 379616 [TBL] [Abstract][Full Text] [Related]
45. Rapid micromethod for the purification of Escherichia coli ribonucleic acid polymerase and the preparation of bacterial extracts active in ribonucleic acid synthesis. Gross C; Engbaek F; Flammang T; Burgess R J Bacteriol; 1976 Oct; 128(1):382-9. PubMed ID: 789341 [TBL] [Abstract][Full Text] [Related]
46. Stimulation of RNA synthesis by dinucleotides with eukaryotic RNA polymerase. Shaw PA; Saunders GF FEBS Lett; 1979 Oct; 106(1):104-10. PubMed ID: 387440 [No Abstract] [Full Text] [Related]
47. Initiation by Escherichia coli RNA-polymerase: transformation of abortive to productive complex. Grachev MA; Zaychikov EF FEBS Lett; 1980 Jun; 115(1):23-6. PubMed ID: 6156091 [No Abstract] [Full Text] [Related]
48. The two effects of rifampicin on the RNA polymerase reaction. Kessler C; Hartmann GR Biochem Biophys Res Commun; 1977 Jan; 74(1):50-6. PubMed ID: 319794 [No Abstract] [Full Text] [Related]
49. DnaA protein interacts with RNA polymerase and partially protects it from the effect of rifampicin. Flåtten I; Morigen ; Skarstad K Mol Microbiol; 2009 Feb; 71(4):1018-30. PubMed ID: 19170875 [TBL] [Abstract][Full Text] [Related]
50. Regulation of RNA polymerase subunit synthesis in Escherichia coli: utilization of DNA-Intercalating drugs as a probe. Chao L Arch Biochem Biophys; 1977 Sep; 183(1):242-9. PubMed ID: 334079 [No Abstract] [Full Text] [Related]
51. Effects of bacteriophage T4-induced modification of Escherichia coli RNA polymerase on gene expression in vitro. Mailhammer R; Yang HL; Reiness G; Zubay G Proc Natl Acad Sci U S A; 1975 Dec; 72(12):4928-32. PubMed ID: 1108008 [TBL] [Abstract][Full Text] [Related]
52. Evidence that rifampicin can stimulate readthrough of transcriptional terminators in Escherichia coli, including the attenuator of the rpoBC operon. Newman AJ; Ma JC; Howe KM; Garner I; Hayward RS Nucleic Acids Res; 1982 Nov; 10(22):7409-24. PubMed ID: 6296775 [TBL] [Abstract][Full Text] [Related]
53. Genetic and physiological investigation of rifampicin-resistant RNA polymerase mutants of Escherichia coli K-12. Communication II. Localization of the rifampicin locus on the chromosome map and its fine mapping. Alikhanyan SI; Tovmasyan KN Sov Genet; 1974 Nov; 9(1):52-6. PubMed ID: 4616345 [No Abstract] [Full Text] [Related]
54. Use of inorganic pyrophosphatase to improve the yield of in vitro transcription reactions catalyzed by T7 RNA polymerase. Cunningham PR; Ofengand J Biotechniques; 1990 Dec; 9(6):713-4. PubMed ID: 1702976 [No Abstract] [Full Text] [Related]
55. Optimal conditions for primer-dependent transcription of poly (dT) by RNA polymerase. van Kreijl CF Biochem Biophys Res Commun; 1973 Sep; 54(1):17-24. PubMed ID: 4582375 [No Abstract] [Full Text] [Related]
56. Genetic and physiological investigation of rifampicin-resistant RNA-polymerase mutants of Escherichia coli K-12. Communication I. Study of certain genotypic and phenotypic properties of rifampicin-resistant mutants. Alikhanyan SI; Tovmasyan KN; Severina IA Sov Genet; 1974 Sep; 8(10):1296-302. PubMed ID: 4612738 [No Abstract] [Full Text] [Related]
57. Kinetic studies of the interaction between rifampicin and DNA-dependent RNA polymerase of Escherichia coli. Wehrli W Eur J Biochem; 1977 Nov; 80(2):325-30. PubMed ID: 336370 [No Abstract] [Full Text] [Related]
58. Mechanism of ribonucleic acid chain initiation. 2. A real time analysis of initiation by the rapid kinetic technique. Shimamoto N; Wu CW Biochemistry; 1980 Mar; 19(5):849-56. PubMed ID: 6153532 [No Abstract] [Full Text] [Related]
59. Hybridization in vitro of subunits of the DNA-dependent RNA polymerase from Escherichia coli and Micrococcus luteus. Lill UI; Behrendt EM; Hartmann GR Eur J Biochem; 1975 Apr; 52(3):411-20. PubMed ID: 800984 [No Abstract] [Full Text] [Related]
60. The use of dextran-coated charcoal for kinetic measurements: interaction between rifampicin and DNA-dependent RNA polymerase of Escherichia coli. Wyss E; Wehrli W Anal Biochem; 1976 Feb; 70(2):547-53. PubMed ID: 773210 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]