BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 8251487)

  • 1. Kinetic analysis of phospholipid exchange between phosphatidylcholine/taurocholate mixed micelles: effect of the acyl chain moiety of the micellar phosphatidylcholine.
    Fullington DA; Nichols JW
    Biochemistry; 1993 Nov; 32(47):12678-84. PubMed ID: 8251487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phospholipid transfer between phosphatidylcholine-taurocholate mixed micelles.
    Nichols JW
    Biochemistry; 1988 May; 27(11):3925-31. PubMed ID: 3415964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of phospholipid transfer between mixed phospholipid-bile salt micelles.
    Fullington DA; Shoemaker DG; Nichols JW
    Biochemistry; 1990 Jan; 29(4):879-86. PubMed ID: 2340281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 7-nitrobenz-2-oxa-1,3-diazole-4-yl-labeled phospholipids in lipid membranes: differences in fluorescence behavior.
    Mazères S; Schram V; Tocanne JF; Lopez A
    Biophys J; 1996 Jul; 71(1):327-35. PubMed ID: 8804615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of spontaneous phospholipid transfer between phospholipid vesicles and between phospholipid-bile salt mixed micelles.
    Nichols JW
    Hepatology; 1990 Sep; 12(3 Pt 2):83S-86S; discussion 86S-87S. PubMed ID: 2210663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Head group-independent interaction of phospholipids with bile salts. A fluorescence and EPR study.
    Wüstner D; Herrmann A; Müller P
    J Lipid Res; 2000 Mar; 41(3):395-404. PubMed ID: 10706587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slow Phospholipid Exchange between a Detergent-Solubilized Membrane Protein and Lipid-Detergent Mixed Micelles: Brominated Phospholipids as Tools to Follow Its Kinetics.
    Montigny C; Dieudonné T; Orlowski S; Vázquez-Ibar JL; Gauron C; Georgin D; Lund S; le Maire M; Møller JV; Champeil P; Lenoir G
    PLoS One; 2017; 12(1):e0170481. PubMed ID: 28118404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visualization of lateral phases in cholesterol and phosphatidylcholine monolayers at the air/water interface--a comparative study with two different reporter molecules.
    Slotte JP; Mattjus P
    Biochim Biophys Acta; 1995 Jan; 1254(1):22-9. PubMed ID: 7811742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect on the partition equilibrium of various drugs by the formation of mixed bile salt/phosphatidylcholine/fatty acid micelles. A characterization by micellar affinity capillary electrophoresis. Part IV.
    Schawrz MA; Raith K; Dongowski G; Neubert RH
    J Chromatogr A; 1998 Jun; 809(1-2):219-29. PubMed ID: 9677716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of mixed micelles and vesicles of human apolipoproteins A-I and A-II with synthetic and natural lecithins and the bile salt sodium taurocholate: quasi-elastic light scattering studies.
    Donovan JM; Benedek GB; Carey MC
    Biochemistry; 1987 Dec; 26(25):8215-33. PubMed ID: 3126801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dithionite quenching rate measurement of the inside-outside membrane bilayer distribution of 7-nitrobenz-2-oxa-1,3-diazol-4-yl-labeled phospholipids.
    Angeletti C; Nichols JW
    Biochemistry; 1998 Oct; 37(43):15114-9. PubMed ID: 9790674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence studies of phosphatidylcholine micelle mixing: relevance to phospholipase kinetics.
    Soltys CE; Roberts MF
    Biochemistry; 1994 Sep; 33(38):11608-17. PubMed ID: 7918374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the kinetics of phospholipase C activity toward mixed micelles of sodium deoxycholate and dimyristoylphosphatidylcholine.
    Ranganathan R; Tcacenco CM; Rosseto R; Hajdu J
    Biophys Chem; 2006 Jul; 122(2):79-89. PubMed ID: 16556477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetric distribution of phosphatidylcholine and sphingomyelin between micellar and vesicular phases. Potential implications for canalicular bile formation.
    Eckhardt ER; Moschetta A; Renooij W; Goerdayal SS; van Berge-Henegouwen GP; van Erpecum KJ
    J Lipid Res; 1999 Nov; 40(11):2022-33. PubMed ID: 10553006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of bile salt and phospholipids with bovine submaxillary mucin.
    Wiedmann TS; Deye C; Kallick D
    Pharm Res; 2001 Jan; 18(1):45-53. PubMed ID: 11336352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micelle-vesicle transition in phospholipid-bile salt mixtures. A study by precision scanning calorimetry.
    Spink CH; Lieto V; Mereand E; Pruden C
    Biochemistry; 1991 May; 30(20):5104-12. PubMed ID: 2036377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excluded volume effect of rat intestinal mucin on taurocholate/phosphatidylcholine mixed micelles.
    Wiedmann TS; Liang W; Herrington H
    J Colloid Interface Sci; 2004 Feb; 270(2):321-8. PubMed ID: 14697697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid exchange between mixed micelles of phospholipid and triton X-100.
    Thomas MJ; Pang K; Chen Q; Lyles D; Hantgan R; Waite M
    Biochim Biophys Acta; 1999 Feb; 1417(1):144-56. PubMed ID: 10076043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intraduodenal conjugated bile salts exert negative feedback control on gall bladder emptying in the fasting state without affecting cholecystokinin release or antroduodenal motility.
    van Ooteghem NA; Moschetta A; Rehfeld JF; Samsom M; van Erpecum KJ; van Berge-Henegouwen GP
    Gut; 2002 May; 50(5):669-74. PubMed ID: 11950814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the role of micellar phospholipid in the preferential uptake of cholesterol over sitosterol by dispersed rat jejunal villus cells.
    Child P; Kuksis A
    Biochem Cell Biol; 1986 Aug; 64(8):847-53. PubMed ID: 3768170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.