BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 8251566)

  • 1. Production of active oxygen species by phagocytic leukocytes.
    Robinson JM; Badwey JA
    Immunol Ser; 1994; 60():159-78. PubMed ID: 8251566
    [No Abstract]   [Full Text] [Related]  

  • 2. Differential effect of cyclosporine A on respiratory burst by several types of human leukocytic cells.
    Chiara MD; Foot AB; Sobrino F; Jones OT
    Biochem Int; 1991 Apr; 23(6):1185-93. PubMed ID: 1659423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The respiratory burst oxidase.
    Babior BM
    Hematol Oncol Clin North Am; 1988 Jun; 2(2):201-12. PubMed ID: 2839456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen radical production and severity of the Guillain--Barré syndrome.
    Mossberg N; Andersen O; Nilsson S; Dahlgren C; Hellstrand K; Lindh M; Svedhem A; Bergström T; Movitz C
    J Neuroimmunol; 2007 Dec; 192(1-2):186-91. PubMed ID: 17945354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen radical production in leukocytes and disease severity in multiple sclerosis.
    Mossberg N; Movitz C; Hellstrand K; Bergström T; Nilsson S; Andersen O
    J Neuroimmunol; 2009 Aug; 213(1-2):131-4. PubMed ID: 19589606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different subcellular localization of cytochrome b and the dormant NADPH-oxidase in neutrophils and macrophages: effect on the production of reactive oxygen species during phagocytosis.
    Johansson A; Jesaitis AJ; Lundqvist H; Magnusson KE; Sjölin C; Karlsson A; Dahlgren C
    Cell Immunol; 1995 Mar; 161(1):61-71. PubMed ID: 7867086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of glycine on the release of reactive oxygen species in human neutrophils.
    Giambelluca MS; Gende OA
    Int Immunopharmacol; 2009 Jan; 9(1):32-7. PubMed ID: 18835373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of lysophospholipids on the generation of reactive oxygen species by fMLP- and PMA-stimulated human neutrophils.
    Müller J; Petković M; Schiller J; Arnold K; Reichl S; Arnhold J
    Luminescence; 2002; 17(3):141-9. PubMed ID: 12164363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The phagocyte chemiluminescence paradox: luminol can act as an inhibitor of neutrophil NADPH-oxidase activity.
    Fäldt J; Ridell M; Karlsson A; Dahlgren C
    Luminescence; 1999; 14(3):153-60. PubMed ID: 10423576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The enzyme responsible for the respiratory burst in elicited guinea pig peritoneal macrophages.
    Berton G; Bellavite P; Dri P; de Togni P; Rossi F
    J Pathol; 1982 Apr; 136(4):273-90. PubMed ID: 7077433
    [No Abstract]   [Full Text] [Related]  

  • 11. Structure of the NADPH-oxidase: membrane components.
    Segal AW
    Immunodeficiency; 1993; 4(1-4):167-79. PubMed ID: 8167695
    [No Abstract]   [Full Text] [Related]  

  • 12. Activation of oxidative burst and degranulation of porcine neutrophils by a homologous spleen galectin-1 compared to N-formyl-L-methionyl-L-leucyl-L-phenylalanine and phorbol 12-myristate 13-acetate.
    Elola MT; Chiesa ME; Fink NE
    Comp Biochem Physiol B Biochem Mol Biol; 2005 May; 141(1):23-31. PubMed ID: 15820131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of different chemilumigenic substrates for detecting extracellular generation of reactive oxygen species by phagocytes and endothelial cells.
    Kopprasch S; Pietzsch J; Graessler J
    Luminescence; 2003; 18(5):268-73. PubMed ID: 14587078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytochrome b-245 and its involvement in the molecular pathology of chronic granulomatous disease.
    Segal AW
    Hematol Oncol Clin North Am; 1988 Jun; 2(2):213-23. PubMed ID: 3292507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New insights into the membrane topology of the phagocyte NADPH oxidase: characterization of an anti-gp91-phox conformational monoclonal antibody.
    Campion Y; Paclet MH; Jesaitis AJ; Marques B; Grichine A; Berthier S; Lenormand JL; Lardy B; Stasia MJ; Morel F
    Biochimie; 2007 Sep; 89(9):1145-58. PubMed ID: 17397983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular basis for Rac2 regulation of phagocyte NADPH oxidase.
    Diebold BA; Bokoch GM
    Nat Immunol; 2001 Mar; 2(3):211-5. PubMed ID: 11224519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dinucleoside polyphosphates: newly detected uraemic compounds with an impact on leucocyte oxidative burst.
    Schepers E; Glorieux G; Jankowski V; Dhondt A; Jankowski J; Vanholder R
    Nephrol Dial Transplant; 2010 Aug; 25(8):2636-44. PubMed ID: 20190246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chronic granulomatous disease: diagnosis and classification at the molecular level.
    Hopkins PJ; Bemiller LS; Curnutte JT
    Clin Lab Med; 1992 Jun; 12(2):277-304. PubMed ID: 1611821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual stimulus-dependent effect of Oenothera paradoxa extract on the respiratory burst in human leukocytes: suppressing for Escherichia coli and phorbol myristate acetate and stimulating for formyl-methionyl-leucyl-phenylalanine.
    Burzynska-Pedziwiatr I; Bukowiecka-Matusiak M; Wojcik M; Machala W; Bienkiewicz M; Spolnik G; Danikiewicz W; Wozniak LA
    Oxid Med Cell Longev; 2014; 2014():764367. PubMed ID: 25298860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signaling by the respiratory burst in macrophages.
    Forman HJ; Torres M
    IUBMB Life; 2001 Jun; 51(6):365-71. PubMed ID: 11758804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.