These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 8251764)

  • 21. Strain gauges used in the mechanical testing of bones. Part I: Theoretical and technical aspects.
    Cordey J; Gautier E
    Injury; 1999; 30 Suppl 1():A7-13. PubMed ID: 10645363
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Using functional loading to influence bone mass and architecture: objectives, mechanisms, and relationship with estrogen of the mechanically adaptive process in bone.
    Lanyon LE
    Bone; 1996 Jan; 18(1 Suppl):37S-43S. PubMed ID: 8717546
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dissociation of mineral and collagen orientations may differentially adapt compact bone for regional loading environments: results from acoustic velocity measurements in deer calcanei.
    Skedros JG; Sorenson SM; Takano Y; Turner CH
    Bone; 2006 Jul; 39(1):143-51. PubMed ID: 16459155
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Estrogen and bone-muscle strength and mass relationships.
    Schiessl H; Frost HM; Jee WS
    Bone; 1998 Jan; 22(1):1-6. PubMed ID: 9437507
    [TBL] [Abstract][Full Text] [Related]  

  • 25. From Wolff's law to the Utah paradigm: insights about bone physiology and its clinical applications.
    Frost HM
    Anat Rec; 2001 Apr; 262(4):398-419. PubMed ID: 11275971
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wolff's law of trabecular architecture at remodeling equilibrium.
    Cowin SC
    J Biomech Eng; 1986 Feb; 108(1):83-8. PubMed ID: 3959556
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimental tests of planar strain theory for predicting bone cross-sectional longitudinal and shear strains.
    Verner KA; Lehner M; Lamas LP; Main RP
    J Exp Biol; 2016 Oct; 219(Pt 19):3082-3090. PubMed ID: 27471276
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Wolff's law-based continuum topology optimization method and its application in biomechanics].
    Cai K; Zhang H; Luo Y; Chen B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):331-5. PubMed ID: 18610617
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differences in osteonal micromorphology between tensile and compressive cortices of a bending skeletal system: indications of potential strain-specific differences in bone microstructure.
    Skedros JG; Mason MW; Bloebaum RD
    Anat Rec; 1994 Aug; 239(4):405-13. PubMed ID: 7978364
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [The biomechanics of bone and the skeleton. I. (Analysis of Wolff's law on bone transformation from the year 1892)].
    Martinko V; Jelínek L; Makai F
    Acta Chir Orthop Traumatol Cech; 1987 Jun; 54(3):193-203. PubMed ID: 3310479
    [No Abstract]   [Full Text] [Related]  

  • 31. From Wolff's law to the mechanostat: a new "face" of physiology.
    Frost HM
    J Orthop Sci; 1998; 3(5):282-6. PubMed ID: 9732563
    [No Abstract]   [Full Text] [Related]  

  • 32. Biomechanical implications of mineral content and microstructural variations in cortical bone of horse, elk, and sheep calcanei.
    Skedros JG; Su SC; Bloebaum RD
    Anat Rec; 1997 Nov; 249(3):297-316. PubMed ID: 9372164
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling and remodeling in a developing artiodactyl calcaneus: a model for evaluating Frost's Mechanostat hypothesis and its corollaries.
    Skedros JG; Mason MW; Bloebaum RD
    Anat Rec; 2001 Jun; 263(2):167-85. PubMed ID: 11360234
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computer simulation of trabecular remodeling in human proximal femur using large-scale voxel FE models: Approach to understanding Wolff's law.
    Tsubota K; Suzuki Y; Yamada T; Hojo M; Makinouchi A; Adachi T
    J Biomech; 2009 May; 42(8):1088-94. PubMed ID: 19403138
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Wolff's law of transformation after 100 years].
    Hert J
    Acta Chir Orthop Traumatol Cech; 1990 Dec; 57(6):465-76. PubMed ID: 2091427
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Increased bone formation in rat tibiae after a single short period of dynamic loading in vivo.
    Forwood MR; Owan I; Takano Y; Turner CH
    Am J Physiol; 1996 Mar; 270(3 Pt 1):E419-23. PubMed ID: 8638687
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Responses of bone cells to biomechanical forces in vitro.
    Burger EH; Klein-Nulen J
    Adv Dent Res; 1999 Jun; 13():93-8. PubMed ID: 11276754
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bone morphology allows estimation of loading history in a murine model of bone adaptation.
    Christen P; van Rietbergen B; Lambers FM; Müller R; Ito K
    Biomech Model Mechanobiol; 2012 Mar; 11(3-4):483-92. PubMed ID: 21735242
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On Wolff's law of trabecular architecture.
    Turner CH
    J Biomech; 1992 Jan; 25(1):1-9. PubMed ID: 1733977
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhomogeneity of tissue-level strain distributions in individual trabeculae: mathematical model studies of normal and osteoporosis cases.
    Gefen A; Portnoy S; Diamant I
    Med Eng Phys; 2008 Jun; 30(5):624-30. PubMed ID: 17697794
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.