These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 825186)

  • 1. Kinematic effects of deafferentation and cerebellar ablation.
    Gilman S; Carr D; Hollenberg J
    Brain; 1976 Jun; 99(2):311-30. PubMed ID: 825186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Limb trajectories after cerebellar ablation and deafferentation in the monkey.
    Gilman S; Carr D; Hollenberg J
    Trans Am Neurol Assoc; 1976; 101():168-70. PubMed ID: 829293
    [No Abstract]   [Full Text] [Related]  

  • 3. Primate models of postural disorders.
    Gilman S
    Adv Neurol; 1975; 10():55-76. PubMed ID: 1056689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity of pre-entral neurones in conscious monkeys: effects of deafferentation and cerebellar ablation.
    Lamarre Y; Bioulac B; Jacks B
    J Physiol (Paris); 1978; 74(3):253-64. PubMed ID: 102774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relationship between monkey ventrolateral thalamic nucleus activity and kinematic parameters of wrist movement.
    Butler EG; Finkelstein DI; Harvey MC; Churchward PR; Forlano LM; Horne MK
    Brain Res; 1996 Oct; 736(1-2):146-59. PubMed ID: 8930319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unilateral forelimb deafferentation in the monkey: purposive movement.
    Berman D; Derasmo MJ; Marti A; Berman AJ
    J Med Primatol; 1978; 7(2):106-13. PubMed ID: 101662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of motor programs underlying arm movements in monkeys.
    Polit A; Bizzi E
    J Neurophysiol; 1979 Jan; 42(1 Pt 1):183-94. PubMed ID: 107279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Computerized method for arm movement assessment in Parkinson's disease and cerebellar syndrome patients].
    Dordević O; Popović MB; Kostić V
    Srp Arh Celok Lek; 2005; 133(1-2):14-20. PubMed ID: 16053170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Weight-lifting by normal and deafferented monkeys: evidence for compensatory changes in ongoing movements.
    Wylie RM; Tyner CF
    Brain Res; 1981 Aug; 219(1):172-7. PubMed ID: 6790129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A frequency analysis of neuronal activity in monkey thalamus, motor cortex and electromyograms in wrist oscillations.
    Butler EG; Horne MK; Churchward PR
    J Physiol; 1992 Jan; 445():49-68. PubMed ID: 1501144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human horizontal vestibulo-ocular reflex initiation: effects of acceleration, target distance, and unilateral deafferentation.
    Crane BT; Demer JL
    J Neurophysiol; 1998 Sep; 80(3):1151-66. PubMed ID: 9744929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acceleration deficit in patients with cerebellar lesions. A study of kinematic and EMG-parameters in fast wrist movements.
    Wild B; Klockgether T; Dichgans J
    Brain Res; 1996 Mar; 713(1-2):186-91. PubMed ID: 8724990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Internally driven control of reaching movements: a study on a proprioceptively deafferented subject.
    Sarlegna FR; Gauthier GM; Bourdin C; Vercher JL; Blouin J
    Brain Res Bull; 2006 Apr; 69(4):404-15. PubMed ID: 16624672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of the cerebellum in the initiation of fast ballistic movement in the monkey.
    Lamarre Y; Jacks B
    Electroencephalogr Clin Neurophysiol Suppl; 1978; (34):441-7. PubMed ID: 108081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. I. Purkinje cell activity during visually guided horizontal smooth-pursuit eye movements and passive head rotation.
    Lisberger SG; Fuchs AF
    J Neurophysiol; 1978 May; 41(3):733-63. PubMed ID: 96225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural basis for motor learning in the vestibuloocular reflex of primates. III. Computational and behavioral analysis of the sites of learning.
    Lisberger SG
    J Neurophysiol; 1994 Aug; 72(2):974-98. PubMed ID: 7983549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Movement and electromyographic disorders associated with cerebellar dysmetria.
    Flament D; Hore J
    J Neurophysiol; 1986 Jun; 55(6):1221-33. PubMed ID: 3734856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle spindle function during normal movement.
    Prochazka A
    Int Rev Physiol; 1981; 25():47-90. PubMed ID: 6451597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Lesions of ponto-cerebellar and olivo-cerebellar afferents demonstrated by neurophysiologic analysis].
    Setta F; Manto MU; Jacquy J; Dethy S; Hildebrand J; Baecke M; Barthelémy M
    Rev Neurol (Paris); 1998 Jun; 154(5):391-8. PubMed ID: 9773070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of lesions of the oculomotor vermis on eye movements in primate: saccades.
    Takagi M; Zee DS; Tamargo RJ
    J Neurophysiol; 1998 Oct; 80(4):1911-31. PubMed ID: 9772249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.