These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 8251935)

  • 1. Effect of a single aspartate on helix stability at different positions in a neutral alanine-based peptide.
    Huyghues-Despointes BM; Scholtz JM; Baldwin RL
    Protein Sci; 1993 Oct; 2(10):1604-11. PubMed ID: 8251935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion-pair and charged hydrogen-bond interactions between histidine and aspartate in a peptide helix.
    Huyghues-Despointes BM; Baldwin RL
    Biochemistry; 1997 Feb; 36(8):1965-70. PubMed ID: 9047293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energetics of polar side-chain interactions in helical peptides: salt effects on ion pairs and hydrogen bonds.
    Smith JS; Scholtz JM
    Biochemistry; 1998 Jan; 37(1):33-40. PubMed ID: 9425023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charged histidine affects alpha-helix stability at all positions in the helix by interacting with the backbone charges.
    Armstrong KM; Baldwin RL
    Proc Natl Acad Sci U S A; 1993 Dec; 90(23):11337-40. PubMed ID: 8248249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Helix stabilization by Glu-...Lys+ salt bridges in short peptides of de novo design.
    Marqusee S; Baldwin RL
    Proc Natl Acad Sci U S A; 1987 Dec; 84(24):8898-902. PubMed ID: 3122208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The energetics of ion-pair and hydrogen-bonding interactions in a helical peptide.
    Scholtz JM; Qian H; Robbins VH; Baldwin RL
    Biochemistry; 1993 Sep; 32(37):9668-76. PubMed ID: 8373771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The (i, i + 4) Phe-His interaction studied in an alanine-based alpha-helix.
    Armstrong KM; Fairman R; Baldwin RL
    J Mol Biol; 1993 Mar; 230(1):284-91. PubMed ID: 8450542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring the strength of side-chain hydrogen bonds in peptide helices: the Gln.Asp (i, i + 4) interaction.
    Huyghues-Despointes BM; Klingler TM; Baldwin RL
    Biochemistry; 1995 Oct; 34(41):13267-71. PubMed ID: 7577910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Helical peptides with three pairs of Asp-Arg and Glu-Arg residues in different orientations and spacings.
    Huyghues-Despointes BM; Scholtz JM; Baldwin RL
    Protein Sci; 1993 Jan; 2(1):80-5. PubMed ID: 8443591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Positional dependence of the effects of negatively charged Glu side chains on the stability of two-stranded alpha-helical coiled-coils.
    Kohn WD; Kay CM; Hodges RS
    J Pept Sci; 1997; 3(3):209-23. PubMed ID: 9230486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of NH exchange and circular dichroism as techniques for measuring the parameters of the helix-coil transition in peptides.
    Rohl CA; Baldwin RL
    Biochemistry; 1997 Jul; 36(28):8435-42. PubMed ID: 9214287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of interactions involving ionizable residues flanking membrane-inserted hydrophobic helices upon helix-helix interaction.
    Lew S; Caputo GA; London E
    Biochemistry; 2003 Sep; 42(36):10833-42. PubMed ID: 12962508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Glu/Arg, Asp/Arg, and Glu/Lys Salt Bridges on α-Helical Stability and Folding Kinetics.
    Meuzelaar H; Vreede J; Woutersen S
    Biophys J; 2016 Jun; 110(11):2328-2341. PubMed ID: 27276251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the interaction between charged side chains and the alpha-helix dipole using designed thermostable mutants of phage T4 lysozyme.
    Nicholson H; Anderson DE; Dao-pin S; Matthews BW
    Biochemistry; 1991 Oct; 30(41):9816-28. PubMed ID: 1911773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Helix propensities of the amino acids measured in alanine-based peptides without helix-stabilizing side-chain interactions.
    Chakrabartty A; Kortemme T; Baldwin RL
    Protein Sci; 1994 May; 3(5):843-52. PubMed ID: 8061613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Empirical parameterization of a model for predicting peptide helix/coil equilibrium populations.
    Andersen NH; Tong H
    Protein Sci; 1997 Sep; 6(9):1920-36. PubMed ID: 9300492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Position and ionization state of Asp in the core of membrane-inserted alpha helices control both the equilibrium between transmembrane and nontransmembrane helix topography and transmembrane helix positioning.
    Caputo GA; London E
    Biochemistry; 2004 Jul; 43(27):8794-806. PubMed ID: 15236588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Helix-stabilizing interaction between tyrosine and leucine or valine when the spacing is i, i + 4.
    Padmanabhan S; Baldwin RL
    J Mol Biol; 1994 Sep; 241(5):706-13. PubMed ID: 8071994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of context on alpha-helix stabilization: host-guest analysis in a mixed background peptide model.
    Yang J; Spek EJ; Gong Y; Zhou H; Kallenbach NR
    Protein Sci; 1997 Jun; 6(6):1264-72. PubMed ID: 9194186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of increased length and intact capping sequences to the conformational preference for helix in a 31-residue peptide from the C terminus of myohemerythrin.
    Reymond MT; Huo S; Duggan B; Wright PE; Dyson HJ
    Biochemistry; 1997 Apr; 36(17):5234-44. PubMed ID: 9136885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.