These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
342 related articles for article (PubMed ID: 8251940)
1. In vitro aging of calmodulin generates isoaspartate at multiple Asn-Gly and Asp-Gly sites in calcium-binding domains II, III, and IV. Potter SM; Henzel WJ; Aswad DW Protein Sci; 1993 Oct; 2(10):1648-63. PubMed ID: 8251940 [TBL] [Abstract][Full Text] [Related]
2. Calcium affects the spontaneous degradation of aspartyl/asparaginyl residues in calmodulin. Ota IM; Clarke S Biochemistry; 1989 May; 28(9):4020-7. PubMed ID: 2502176 [TBL] [Abstract][Full Text] [Related]
3. Formation of isoaspartate at two distinct sites during in vitro aging of human growth hormone. Johnson BA; Shirokawa JM; Hancock WS; Spellman MW; Basa LJ; Aswad DW J Biol Chem; 1989 Aug; 264(24):14262-71. PubMed ID: 2760065 [TBL] [Abstract][Full Text] [Related]
4. Enzymatic methylation of L-isoaspartyl residues derived from aspartyl residues in affinity-purified calmodulin. The role of conformational flexibility in spontaneous isoaspartyl formation. Ota IM; Clarke S J Biol Chem; 1989 Jan; 264(1):54-60. PubMed ID: 2642479 [TBL] [Abstract][Full Text] [Related]
5. Optimal conditions for the use of protein L-isoaspartyl methyltransferase in assessing the isoaspartate content of peptides and proteins. Johnson BA; Aswad DW Anal Biochem; 1991 Feb; 192(2):384-91. PubMed ID: 1827964 [TBL] [Abstract][Full Text] [Related]
6. Molecular aging of tubulin: accumulation of isoaspartyl sites in vitro and in vivo. Najbauer J; Orpiszewski J; Aswad DW Biochemistry; 1996 Apr; 35(16):5183-90. PubMed ID: 8611502 [TBL] [Abstract][Full Text] [Related]
7. Deamidation and isoaspartate formation during in vitro aging of recombinant tissue plasminogen activator. Paranandi MV; Guzzetta AW; Hancock WS; Aswad DW J Biol Chem; 1994 Jan; 269(1):243-53. PubMed ID: 8276801 [TBL] [Abstract][Full Text] [Related]
8. Prediction of binding modes between protein L-isoaspartyl (D-aspartyl) O-methyltransferase and peptide substrates including isomerized aspartic acid residues using in silico analytic methods for the substrate screening. Oda A; Noji I; Fukuyoshi S; Takahashi O J Pharm Biomed Anal; 2015 Dec; 116():116-22. PubMed ID: 25758062 [TBL] [Abstract][Full Text] [Related]
9. Multiple sites of methyl esterification of calmodulin in intact human erythrocytes. Ota IM; Clarke S Arch Biochem Biophys; 1990 Jun; 279(2):320-7. PubMed ID: 2190534 [TBL] [Abstract][Full Text] [Related]
10. Spontaneous deamidation and isomerization of Asn108 in prion peptide 106-126 and in full-length prion protein. Sandmeier E; Hunziker P; Kunz B; Sack R; Christen P Biochem Biophys Res Commun; 1999 Aug; 261(3):578-83. PubMed ID: 10441469 [TBL] [Abstract][Full Text] [Related]
11. Spontaneous alterations in the covalent structure of synapsin I during in vitro aging. Paranandi MV; Aswad DW Biochem Biophys Res Commun; 1995 Jul; 212(2):442-8. PubMed ID: 7626058 [TBL] [Abstract][Full Text] [Related]
12. Methylation of microinjected isoaspartyl peptides in Xenopus oocytes. Competition with protein carboxyl methylation reactions. Romanik EA; O'Connor CM J Biol Chem; 1989 Aug; 264(24):14050-6. PubMed ID: 2760057 [TBL] [Abstract][Full Text] [Related]
13. Kinetic properties of bovine brain protein L-isoaspartyl methyltransferase determined using a synthetic isoaspartyl peptide substrate. Johnson BA; Aswad DW Neurochem Res; 1993 Jan; 18(1):87-94. PubMed ID: 8464537 [TBL] [Abstract][Full Text] [Related]
14. Methylation at specific altered aspartyl and asparaginyl residues in glucagon by the erythrocyte protein carboxyl methyltransferase. Ota IM; Ding L; Clarke S J Biol Chem; 1987 Jun; 262(18):8522-31. PubMed ID: 3597386 [TBL] [Abstract][Full Text] [Related]
15. Protein carboxyl methyltransferase facilitates conversion of atypical L-isoaspartyl peptides to normal L-aspartyl peptides. Johnson BA; Murray ED; Clarke S; Glass DB; Aswad DW J Biol Chem; 1987 Apr; 262(12):5622-9. PubMed ID: 3571226 [TBL] [Abstract][Full Text] [Related]
16. Isoaspartate formation and neurodegeneration in Alzheimer's disease. Shimizu T; Watanabe A; Ogawara M; Mori H; Shirasawa T Arch Biochem Biophys; 2000 Sep; 381(2):225-34. PubMed ID: 11032409 [TBL] [Abstract][Full Text] [Related]
17. Synapsin I is a major endogenous substrate for protein L-isoaspartyl methyltransferase in mammalian brain. Reissner KJ; Paranandi MV; Luc TM; Doyle HA; Mamula MJ; Lowenson JD; Aswad DW J Biol Chem; 2006 Mar; 281(13):8389-98. PubMed ID: 16443604 [TBL] [Abstract][Full Text] [Related]
18. Partial repair of deamidation-damaged calmodulin by protein carboxyl methyltransferase. Johnson BA; Langmack EL; Aswad DW J Biol Chem; 1987 Sep; 262(25):12283-7. PubMed ID: 3624258 [TBL] [Abstract][Full Text] [Related]
19. Aspartimide formation in the joining peptide sequence of porcine and mouse pro-opiomelanocortin. Toney K; Bateman A; Gagnon C; Bennett HP J Biol Chem; 1993 Jan; 268(2):1024-31. PubMed ID: 8380403 [TBL] [Abstract][Full Text] [Related]
20. Mammalian brain and erythrocyte carboxyl methyltransferases are similar enzymes that recognize both D-aspartyl and L-isoaspartyl residues in structurally altered protein substrates. O'Connor CM; Aswad DW; Clarke S Proc Natl Acad Sci U S A; 1984 Dec; 81(24):7757-61. PubMed ID: 6595658 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]