These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 8251946)

  • 1. Echistatin disulfide bridges: selective reduction and linkage assignment.
    Gray WR
    Protein Sci; 1993 Oct; 2(10):1749-55. PubMed ID: 8251946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disulfide structures of highly bridged peptides: a new strategy for analysis.
    Gray WR
    Protein Sci; 1993 Oct; 2(10):1732-48. PubMed ID: 8251945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assignment of all four disulfide bridges in echistatin.
    Bauer M; Sun Y; Degenhardt C; Kozikowski B
    J Protein Chem; 1993 Dec; 12(6):759-64. PubMed ID: 8136026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterizing closely spaced, complex disulfide bond patterns in peptides and proteins by liquid chromatography/electrospray ionization tandem mass spectrometry.
    Yen TY; Yan H; Macher BA
    J Mass Spectrom; 2002 Jan; 37(1):15-30. PubMed ID: 11813307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microwave-mediated reduction of disulfide bridges with supported (tris(2-carboxyethyl)phosphine) as resin-bound reducing agent.
    Miralles G; Verdié P; Puget K; Maurras A; Martinez J; Subra G
    ACS Comb Sci; 2013 Apr; 15(4):169-73. PubMed ID: 23438263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fragmentation of intra-peptide and inter-peptide disulfide bonds of proteolytic peptides by nanoESI collision-induced dissociation.
    Mormann M; Eble J; Schwöppe C; Mesters RM; Berdel WE; Peter-Katalinić J; Pohlentz G
    Anal Bioanal Chem; 2008 Nov; 392(5):831-8. PubMed ID: 18663433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The disulfide bridge pattern of snake venom disintegrins, flavoridin and echistatin.
    Calvete JJ; Wang Y; Mann K; Schäfer W; Niewiarowski S; Stewart GJ
    FEBS Lett; 1992 Sep; 309(3):316-20. PubMed ID: 1516704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Density Immobilization of TCEP on Silica Beads for Efficient Disulfide Reduction and Thiol Alkylation in Peptides.
    Schüttel M; Heinis C
    Chembiochem; 2024 Feb; 25(3):e202300592. PubMed ID: 38047532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disulfide structure of the pheromone binding protein from the silkworm moth, Bombyx mori.
    Leal WS; Nikonova L; Peng G
    FEBS Lett; 1999 Dec; 464(1-2):85-90. PubMed ID: 10611489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-step selective formation of three disulfide bridges in the synthesis of the C-terminal epidermal growth factor-like domain in human blood coagulation factor IX.
    Yang Y; Sweeney WV; Schneider K; Chait BT; Tam JP
    Protein Sci; 1994 Aug; 3(8):1267-75. PubMed ID: 7987222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thiol-Disulfide Exchange in Human Growth Hormone.
    Chandrasekhar S; Moorthy BS; Xie R; Topp EM
    Pharm Res; 2016 Jun; 33(6):1370-82. PubMed ID: 26887678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel methodology for assignment of disulfide bond pairings in proteins.
    Wu J; Watson JT
    Protein Sci; 1997 Feb; 6(2):391-8. PubMed ID: 9041641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of the disulfide structure of sillucin, a highly knotted, cysteine-rich peptide, by cyanylation/cleavage mass mapping.
    Qi J; Wu J; Somkuti GA; Watson JT
    Biochemistry; 2001 Apr; 40(15):4531-8. PubMed ID: 11294620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-specific PEGylation of protein disulfide bonds using a three-carbon bridge.
    Balan S; Choi JW; Godwin A; Teo I; Laborde CM; Heidelberger S; Zloh M; Shaunak S; Brocchini S
    Bioconjug Chem; 2007; 18(1):61-76. PubMed ID: 17226958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tris(3-hydroxypropyl)phosphine (THPP): A mild, air-stable reagent for the rapid, reductive cleavage of small-molecule disulfides.
    McNulty J; Krishnamoorthy V; Amoroso D; Moser M
    Bioorg Med Chem Lett; 2015 Oct; 25(19):4114-7. PubMed ID: 26318995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of tributylphosphine and 4-(aminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole in the study of protein sulfhydryls and disulfides.
    Chin CC; Wold F
    Anal Biochem; 1993 Oct; 214(1):128-34. PubMed ID: 8250214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of disulfide structure in agouti-related protein (AGRP) by stepwise reduction and alkylation.
    Bures EJ; Hui JO; Young Y; Chow DT; Katta V; Rohde MF; Zeni L; Rosenfeld RD; Stark KL; Haniu M
    Biochemistry; 1998 Sep; 37(35):12172-7. PubMed ID: 9724530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-activity relationship studies of gomesin: importance of the disulfide bridges for conformation, bioactivities, and serum stability.
    Fázio MA; Oliveira VX; Bulet P; Miranda MT; Daffre S; Miranda A
    Biopolymers; 2006; 84(2):205-18. PubMed ID: 16235231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel endogenous inhibitor of phenoloxidase from Musca domestica has a cystine motif commonly found in snail and spider toxins.
    Daquinag AC; Sato T; Koda H; Takao T; Fukuda M; Shimonishi Y; Tsukamoto T
    Biochemistry; 1999 Feb; 38(7):2179-88. PubMed ID: 10026302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Porcine pancreatic lipase. The disulfide bridges and the sulfhydryl groups.
    Benkouka F; Guidoni AA; De Caro JD; Bonicel JJ; Desnuelle PA; Rovery M
    Eur J Biochem; 1982 Nov; 128(2-3):331-41. PubMed ID: 7151781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.