These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 8252376)

  • 21. Electrocyte physiology: 50 years later.
    Markham MR
    J Exp Biol; 2013 Jul; 216(Pt 13):2451-8. PubMed ID: 23761470
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure and sexual dimorphism of the electrocommunication signals of the weakly electric fish, Adontosternarchus devenanzii.
    Zhou M; Smith GT
    J Exp Biol; 2006 Dec; 209(Pt 23):4809-18. PubMed ID: 17114413
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A hormone-sensitive communication system in an electric fish.
    Bass AH
    J Neurobiol; 1986 May; 17(3):131-55. PubMed ID: 3519861
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Individual variation and hormonal modulation of a sodium channel beta subunit in the electric organ correlate with variation in a social signal.
    Liu H; Wu MM; Zakon HH
    Dev Neurobiol; 2007 Sep; 67(10):1289-304. PubMed ID: 17638382
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distribution of Kv1-like potassium channels in the electromotor and electrosensory systems of the weakly electric fish Apteronotus leptorhynchus.
    Smith GT; Unguez GA; Weber CM
    J Neurobiol; 2006 Aug; 66(9):1011-31. PubMed ID: 16779822
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The electric organ discharges of the Petrocephalus species (Teleostei: Mormyridae) of the Upper Volta system.
    Moritz T; Engelmann J; Linsenmair KE; von der Emde G
    J Fish Biol; 2009 Jan; 74(1):54-76. PubMed ID: 20735524
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electric organ discharge diversification in mormyrid weakly electric fish is associated with differential expression of voltage-gated ion channel genes.
    Nagel R; Kirschbaum F; Tiedemann R
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2017 Mar; 203(3):183-195. PubMed ID: 28233058
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electroreceptor model of weakly electric fish Gnathonemus petersii: II. Cellular origin of inverse waveform tuning.
    Shuai J; Kashimori Y; Hoshino O; Kambara T; Emde G
    Biophys J; 1999 Jun; 76(6):3012-25. PubMed ID: 10354427
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sex steroids and communication signals in electric fish: a tale of two species.
    Zakon HH; Dunlap KD
    Brain Behav Evol; 1999; 54(1):61-9. PubMed ID: 10516405
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Individual and sex specificity in the electric organ discharges of breeding mormyrid fish (Pollimyrus isidori).
    Crawford JD
    J Exp Biol; 1992 Mar; 164():79-102. PubMed ID: 1583443
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The evolutionary origins of electric signal complexity.
    Stoddard PK
    J Physiol Paris; 2002; 96(5-6):485-91. PubMed ID: 14692496
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Energetic constraints on electric signalling in wave-type weakly electric fishes.
    Reardon EE; Parisi A; Krahe R; Chapman LJ
    J Exp Biol; 2011 Dec; 214(Pt 24):4141-50. PubMed ID: 22116756
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Behavioral actions of androgens and androgen receptor expression in the electrocommunication system of an electric fish, Eigenmannia virescens.
    Dunlap KD; Zakon HH
    Horm Behav; 1998 Aug; 34(1):30-8. PubMed ID: 9735226
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Androgen correlates of socially induced changes in the electric organ discharge waveform of a mormyrid fish.
    Carlson BA; Hopkins CD; Thomas P
    Horm Behav; 2000 Nov; 38(3):177-86. PubMed ID: 11038292
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamics and stimulus-dependence of pacemaker control during behavioral modulations in the weakly electric fish, Apteronotus.
    Dye J
    J Comp Physiol A; 1987 Aug; 161(2):175-85. PubMed ID: 3625571
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Local vasotocin modulation of the pacemaker nucleus resembles distinct electric behaviors in two species of weakly electric fish.
    Perrone R; Migliaro A; Comas V; Quintana L; Borde M; Silva A
    J Physiol Paris; 2014; 108(2-3):203-12. PubMed ID: 25125289
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electric organ discharges and electric images during electrolocation.
    Assad C; Rasnow B; Stoddard PK
    J Exp Biol; 1999 May; 202(Pt 10):1185-93. PubMed ID: 10210660
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Patterns of electric organ discharge activity in the weakly electric fish Brienomyrus niger L. (Mormyridae).
    Serrier J; Moller P
    Exp Biol; 1989; 48(5):235-44. PubMed ID: 2620705
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation and modulation of electric waveforms in gymnotiform electric fish.
    Stoddard PK; Zakon HH; Markham MR; McAnelly L
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Jun; 192(6):613-24. PubMed ID: 16437223
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The control of pacemaker modulations for social communication in the weakly electric fish Sternopygus.
    Keller CH; Kawasaki M; Heiligenberg W
    J Comp Physiol A; 1991 Oct; 169(4):441-50. PubMed ID: 1685751
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.