These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 8252572)

  • 1. Growth and hypertrophy of the heart: towards an understanding of cardiac specific and inducible gene expression.
    van Bilsen M; Chien KR
    Cardiovasc Res; 1993 Jul; 27(7):1140-9. PubMed ID: 8252572
    [No Abstract]   [Full Text] [Related]  

  • 2. Switches in cardiac muscle gene expression as a result of pressure and volume overload.
    Schwartz K; Boheler KR; de la Bastie D; Lompre AM; Mercadier JJ
    Am J Physiol; 1992 Mar; 262(3 Pt 2):R364-9. PubMed ID: 1532697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of differentially expressed genes in cardiac hypertrophy by analysis of expressed sequence tags.
    Hwang DM; Dempsey AA; Lee CY; Liew CC
    Genomics; 2000 May; 66(1):1-14. PubMed ID: 10843799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MicroRNAs loom large in the heart.
    Basson M
    Nat Med; 2007 May; 13(5):541. PubMed ID: 17479098
    [No Abstract]   [Full Text] [Related]  

  • 5. MicroRNAs in cardiac hypertrophy: angels or devils.
    Ding SL; Zhou LY; Li PF
    Wiley Interdiscip Rev RNA; 2011; 2(1):124-34. PubMed ID: 21956973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanoperception and mechanotransduction in cardiac adaptation: mechanical and molecular aspects.
    Reneman RS; Arts T; van Bilsen M; Snoeckx LH; van der Vusse GJ
    Adv Exp Med Biol; 1995; 382():185-94. PubMed ID: 8540395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential expression of alpha- and beta-enolase genes during rat heart development and hypertrophy.
    Keller A; Rouzeau JD; Farhadian F; Wisnewsky C; Marotte F; Lamandé N; Samuel JL; Schwartz K; Lazar M; Lucas M
    Am J Physiol; 1995 Dec; 269(6 Pt 2):H1843-51. PubMed ID: 8594891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome profiling reveals novel BMI- and sex-specific gene expression signatures for human cardiac hypertrophy.
    Newman MS; Nguyen T; Watson MJ; Hull RW; Yu HG
    Physiol Genomics; 2017 Jul; 49(7):355-367. PubMed ID: 28500252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. p21(CIP1/WAF1)-dependent inhibition of cardiac hypertrophy in response to Angiotensin II involves Akt/Myc and pRb signaling.
    Hauck L; Grothe D; Billia F
    Peptides; 2016 Sep; 83():38-48. PubMed ID: 27486069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biological signals of cardiac hypertrophy.
    Samuel JL; Dubus I; Contard F; Schwartz K; Rappaport L
    Eur Heart J; 1990 Nov; 11 Suppl G():1-7. PubMed ID: 2150030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple chromatin modifications important for gene expression changes in cardiac hypertrophy.
    Bingham AJ; Ooi L; Wood IC
    Biochem Soc Trans; 2006 Dec; 34(Pt 6):1138-40. PubMed ID: 17073769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The repressor element 1-silencing transcription factor regulates heart-specific gene expression using multiple chromatin-modifying complexes.
    Bingham AJ; Ooi L; Kozera L; White E; Wood IC
    Mol Cell Biol; 2007 Jun; 27(11):4082-92. PubMed ID: 17371849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of genes regulated during mechanical load-induced cardiac hypertrophy.
    Johnatty SE; Dyck JR; Michael LH; Olson EN; Abdellatif M
    J Mol Cell Cardiol; 2000 May; 32(5):805-15. PubMed ID: 10775485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular biology of cardiac growth and hypertrophy.
    Parker TG
    Herz; 1993 Aug; 18(4):245-55. PubMed ID: 8375804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiac raptor ablation impairs adaptive hypertrophy, alters metabolic gene expression, and causes heart failure in mice.
    Shende P; Plaisance I; Morandi C; Pellieux C; Berthonneche C; Zorzato F; Krishnan J; Lerch R; Hall MN; Rüegg MA; Pedrazzini T; Brink M
    Circulation; 2011 Mar; 123(10):1073-82. PubMed ID: 21357822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss of P53 regresses cardiac remodeling induced by pressure overload partially through inhibiting HIF1α signaling in mice.
    Li J; Zeng J; Wu L; Tao L; Liao Z; Chu M; Li L
    Biochem Biophys Res Commun; 2018 Jun; 501(2):394-399. PubMed ID: 29729274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isoproterenol infusion induces alterations in expression of hypertrophy-associated genes in rat heart.
    Boluyt MO; Long X; Eschenhagen T; Mende U; Schmitz W; Crow MT; Lakatta EG
    Am J Physiol; 1995 Aug; 269(2 Pt 2):H638-47. PubMed ID: 7653628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy.
    Rockman HA; Ross RS; Harris AN; Knowlton KU; Steinhelper ME; Field LJ; Ross J; Chien KR
    Proc Natl Acad Sci U S A; 1991 Sep; 88(18):8277-81. PubMed ID: 1832775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulator of G protein signaling 3 protects against cardiac hypertrophy in mice.
    Liu Y; Huang H; Zhang Y; Zhu XY; Zhang R; Guan LH; Tang Q; Jiang H; Huang C
    J Cell Biochem; 2014 May; 115(5):977-86. PubMed ID: 24375609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unloaded heart in vivo replicates fetal gene expression of cardiac hypertrophy.
    Depre C; Shipley GL; Chen W; Han Q; Doenst T; Moore ML; Stepkowski S; Davies PJ; Taegtmeyer H
    Nat Med; 1998 Nov; 4(11):1269-75. PubMed ID: 9809550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.