These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 8253176)

  • 1. Election spin resonance studies of free radical formation and oxygen consumption of lens epithelium during ultraviolet exposure.
    Xu J; Sun C; Wu K; Shao J; Shan Q; Cong J; Zhang J
    Yan Ke Xue Bao; 1993 Mar; 9(1):15-8. PubMed ID: 8253176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of free radicals in UV-irradiated lens by spin trapping ESR.
    Murakami J; Kozuka Y; Okazaki M; Shiga T
    Lens Eye Toxic Res; 1992; 9(3-4):447-54. PubMed ID: 1338755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of damage in the lens after in vivo close to threshold exposure to UV-B radiation: cytomorphological study of apoptosis.
    Galichanin K; Löfgren S; Bergmanson J; Söderberg P
    Exp Eye Res; 2010 Sep; 91(3):369-77. PubMed ID: 20599969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near UV-induced free radicals in ocular lens, studied by ESR and spin trapping.
    Murakami J; Okazaki M; Shiga T
    Photochem Photobiol; 1989 Apr; 49(4):465-73. PubMed ID: 2543001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Free radicals produced in human lenses by a biphotonic process.
    Weiter JJ; Subramanian S
    Invest Ophthalmol Vis Sci; 1978 Sep; 17(9):869-73. PubMed ID: 212385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of chronic near-ultraviolet radiation on the gray squirrel lens in vivo.
    Zigman S; Paxhia T; McDaniel T; Lou MF; Yu NT
    Invest Ophthalmol Vis Sci; 1991 May; 32(6):1723-32. PubMed ID: 2032795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and repair of cataract induced by ultraviolet radiation.
    Michael R
    Ophthalmic Res; 2000; 32 Suppl 1():ii-iii; 1-44. PubMed ID: 10817682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of lens epithelial cell proliferation by enhanced prostaglandin synthesis after UVB exposure.
    Andley UP; Hebert JS; Morrison AR; Reddan JR; Pentland AP
    Invest Ophthalmol Vis Sci; 1994 Feb; 35(2):374-81. PubMed ID: 8112984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced prostaglandin synthesis after ultraviolet-B exposure modulates DNA synthesis of lens epithelial cells and lowers intraocular pressure in vivo.
    Andley UP; Becker B; Hebert JS; Reddan JR; Morrison AR; Pentland AP
    Invest Ophthalmol Vis Sci; 1996 Jan; 37(1):142-53. PubMed ID: 8550317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrastructure of UVR-B-induced cataract and repair visualized with electron microscopy.
    Meyer LM; Wegener AR; Holz FG; Kronschläger M; Bergmanson JP; Soderberg PG
    Acta Ophthalmol; 2014 Nov; 92(7):635-43. PubMed ID: 24666994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repair in the rat lens after threshold ultraviolet radiation injury.
    Michael R; Vrensen GF; van Marle J; Löfgren S; Söderberg PG
    Invest Ophthalmol Vis Sci; 2000 Jan; 41(1):204-12. PubMed ID: 10634622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of prostaglandins E2 and F2 alpha in ultraviolet radiation-induced cortical cataracts in vivo.
    Andley UP; Fritz C; Morrison AR; Becker B
    Invest Ophthalmol Vis Sci; 1996 Jul; 37(8):1539-48. PubMed ID: 8675396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Acute ultraviolet B induced lens epithelial cell photo-damage and its repair process].
    Yamada Y; Kojima M; Vrensen GF; Takahashi N; Sasaki K
    Nippon Ganka Gakkai Zasshi; 2001 Feb; 105(2):102-10. PubMed ID: 11235198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lens epithelium: a primary target of UVB irradiation.
    Hightower KR; Reddan JR; McCready JP; Dziedzic DC
    Exp Eye Res; 1994 Nov; 59(5):557-64. PubMed ID: 9492757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Action spectrum for cytotoxicity in the UVA- and UVB-wavelength region in cultured lens epithelial cells.
    Andley UP; Lewis RM; Reddan JR; Kochevar IE
    Invest Ophthalmol Vis Sci; 1994 Feb; 35(2):367-73. PubMed ID: 8112983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial "movement" and lens optics following oxidative stress from UV-B irradiation: cultured bovine lenses and human retinal pigment epithelial cells (ARPE-19) as examples.
    Bantseev V; Youn HY
    Ann N Y Acad Sci; 2006 Dec; 1091():17-33. PubMed ID: 17341599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Telomerase activity in lens epithelial cells of normal and cataractous lenses.
    Colitz CM; Davidson MG; McGAHAN MC
    Exp Eye Res; 1999 Dec; 69(6):641-9. PubMed ID: 10620393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of aqueous humor ascorbate on ultraviolet-B-induced DNA damage in lens epithelium.
    Reddy VN; Giblin FJ; Lin LR; Chakrapani B
    Invest Ophthalmol Vis Sci; 1998 Feb; 39(2):344-50. PubMed ID: 9477992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. UV-induced changes in cell cycle and gene expression within rabbit lens epithelial cells.
    Sidjanin D; Grdina D; Woloschak GE
    Photochem Photobiol; 1996 Jan; 63(1):79-85. PubMed ID: 8577869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Vitamins C and E protect cultures of bovine lens epithelium from the damaging effects of blue light (430 nm) and UVA light (300-400 nm)].
    Mayer UM; Müller Y; Blüthner K
    Klin Monbl Augenheilkd; 2001 Feb; 218(2):116-20. PubMed ID: 11258123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.