These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 8253270)
1. The embryonic ciliated band of the sea urchin, Strongylocentrotus purpuratus derives from both oral and aboral ectoderm. Cameron RA; Britten RJ; Davidson EH Dev Biol; 1993 Dec; 160(2):369-76. PubMed ID: 8253270 [TBL] [Abstract][Full Text] [Related]
2. Segregation of oral from aboral ectoderm precursors is completed at fifth cleavage in the embryogenesis of Strongylocentrotus purpuratus. Cameron RA; Fraser SE; Britten RJ; Davidson EH Dev Biol; 1990 Jan; 137(1):77-85. PubMed ID: 2295368 [TBL] [Abstract][Full Text] [Related]
3. Late specification of Veg1 lineages to endodermal fate in the sea urchin embryo. Ransick A; Davidson EH Dev Biol; 1998 Mar; 195(1):38-48. PubMed ID: 9520322 [TBL] [Abstract][Full Text] [Related]
4. Lefty acts as an essential modulator of Nodal activity during sea urchin oral-aboral axis formation. Duboc V; Lapraz F; Besnardeau L; Lepage T Dev Biol; 2008 Aug; 320(1):49-59. PubMed ID: 18582858 [TBL] [Abstract][Full Text] [Related]
5. Autonomous and non-autonomous differentiation of ectoderm in different sea urchin species. Wikramanayake AH; Brandhorst BP; Klein WH Development; 1995 May; 121(5):1497-505. PubMed ID: 7789279 [TBL] [Abstract][Full Text] [Related]
6. Oral-aboral axis specification in the sea urchin embryo II. Mitochondrial distribution and redox state contribute to establishing polarity in Strongylocentrotus purpuratus. Coffman JA; McCarthy JJ; Dickey-Sims C; Robertson AJ Dev Biol; 2004 Sep; 273(1):160-71. PubMed ID: 15302605 [TBL] [Abstract][Full Text] [Related]
7. cis-Regulatory sequences driving the expression of the Hbox12 homeobox-containing gene in the presumptive aboral ectoderm territory of the Paracentrotus lividus sea urchin embryo. Cavalieri V; Di Bernardo M; Anello L; Spinelli G Dev Biol; 2008 Sep; 321(2):455-69. PubMed ID: 18585371 [TBL] [Abstract][Full Text] [Related]
8. USF in the Lytechinus sea urchin embryo may act as a transcriptional repressor in non-aboral ectoderm cells for the cell lineage-specific expression of the LpS1 genes. Seid CA; George JM; Sater AK; Kozlowski MT; Lee H; Govindarajan V; Ramachandran RK; Tomlinson CR J Mol Biol; 1996 Nov; 264(1):7-19. PubMed ID: 8950263 [TBL] [Abstract][Full Text] [Related]
9. Specification of ectoderm restricts the size of the animal plate and patterns neurogenesis in sea urchin embryos. Yaguchi S; Yaguchi J; Burke RD Development; 2006 Jun; 133(12):2337-46. PubMed ID: 16687447 [TBL] [Abstract][Full Text] [Related]
10. Multispectral labeling of embryonic cells with lipophilic carbocyanine dyes. Volnoukhin M; Brandhorst BP Mol Reprod Dev; 2015; 82(7-8):619-24. PubMed ID: 25820691 [TBL] [Abstract][Full Text] [Related]
11. Short-range cell-cell signals control ectodermal patterning in the oral region of the sea urchin embryo. Hardin J; Armstrong N Dev Biol; 1997 Feb; 182(1):134-49. PubMed ID: 9073456 [TBL] [Abstract][Full Text] [Related]
12. Reduced O2 and elevated ROS in sea urchin embryos leads to defects in ectoderm differentiation. Agca C; Klein WH; Venuti JM Dev Dyn; 2009 Jul; 238(7):1777-87. PubMed ID: 19517573 [TBL] [Abstract][Full Text] [Related]
13. Spatial expression of alpha and beta tubulin genes in the late embryogenesis of the sea urchin Paracentrotus lividus. Casano C; Ragusa M; Cutrera M; Costa S; Gianguzza F Int J Dev Biol; 1996 Oct; 40(5):1033-41. PubMed ID: 8946250 [TBL] [Abstract][Full Text] [Related]
14. cis-Regulatory control of the initial neurogenic pattern of onecut gene expression in the sea urchin embryo. Barsi JC; Davidson EH Dev Biol; 2016 Jan; 409(1):310-318. PubMed ID: 26522848 [TBL] [Abstract][Full Text] [Related]
15. The allocation of early blastomeres to the ectoderm and endoderm is variable in the sea urchin embryo. Logan CY; McClay DR Development; 1997 Jun; 124(11):2213-23. PubMed ID: 9187147 [TBL] [Abstract][Full Text] [Related]
16. Subequatorial cytoplasm plays an important role in ectoderm patterning in the sea urchin embryo. Kominami T; Akagawa M; Takata H Dev Growth Differ; 2006 Feb; 48(2):101-15. PubMed ID: 16512854 [TBL] [Abstract][Full Text] [Related]
17. Geometric control of ciliated band regulatory states in the sea urchin embryo. Barsi JC; Li E; Davidson EH Development; 2015 Mar; 142(5):953-61. PubMed ID: 25655703 [TBL] [Abstract][Full Text] [Related]
18. Gene regulatory networks for ectoderm specification in sea urchin embryos. Su YH Biochim Biophys Acta; 2009 Apr; 1789(4):261-7. PubMed ID: 19429544 [TBL] [Abstract][Full Text] [Related]
19. Multiple signaling events specify ectoderm and pattern the oral-aboral axis in the sea urchin embryo. Wikramanayake AH; Klein WH Development; 1997 Jan; 124(1):13-20. PubMed ID: 9006063 [TBL] [Abstract][Full Text] [Related]
20. Co-option of an oral-aboral patterning mechanism to control left-right differentiation: the direct-developing sea urchin Heliocidaris erythrogramma is sinistralized, not ventralized, by NiCl2. Minsuk SB; Raff RA Evol Dev; 2005; 7(4):289-300. PubMed ID: 15982366 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]