BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 8253270)

  • 1. The embryonic ciliated band of the sea urchin, Strongylocentrotus purpuratus derives from both oral and aboral ectoderm.
    Cameron RA; Britten RJ; Davidson EH
    Dev Biol; 1993 Dec; 160(2):369-76. PubMed ID: 8253270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Segregation of oral from aboral ectoderm precursors is completed at fifth cleavage in the embryogenesis of Strongylocentrotus purpuratus.
    Cameron RA; Fraser SE; Britten RJ; Davidson EH
    Dev Biol; 1990 Jan; 137(1):77-85. PubMed ID: 2295368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Late specification of Veg1 lineages to endodermal fate in the sea urchin embryo.
    Ransick A; Davidson EH
    Dev Biol; 1998 Mar; 195(1):38-48. PubMed ID: 9520322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lefty acts as an essential modulator of Nodal activity during sea urchin oral-aboral axis formation.
    Duboc V; Lapraz F; Besnardeau L; Lepage T
    Dev Biol; 2008 Aug; 320(1):49-59. PubMed ID: 18582858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autonomous and non-autonomous differentiation of ectoderm in different sea urchin species.
    Wikramanayake AH; Brandhorst BP; Klein WH
    Development; 1995 May; 121(5):1497-505. PubMed ID: 7789279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oral-aboral axis specification in the sea urchin embryo II. Mitochondrial distribution and redox state contribute to establishing polarity in Strongylocentrotus purpuratus.
    Coffman JA; McCarthy JJ; Dickey-Sims C; Robertson AJ
    Dev Biol; 2004 Sep; 273(1):160-71. PubMed ID: 15302605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. cis-Regulatory sequences driving the expression of the Hbox12 homeobox-containing gene in the presumptive aboral ectoderm territory of the Paracentrotus lividus sea urchin embryo.
    Cavalieri V; Di Bernardo M; Anello L; Spinelli G
    Dev Biol; 2008 Sep; 321(2):455-69. PubMed ID: 18585371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. USF in the Lytechinus sea urchin embryo may act as a transcriptional repressor in non-aboral ectoderm cells for the cell lineage-specific expression of the LpS1 genes.
    Seid CA; George JM; Sater AK; Kozlowski MT; Lee H; Govindarajan V; Ramachandran RK; Tomlinson CR
    J Mol Biol; 1996 Nov; 264(1):7-19. PubMed ID: 8950263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specification of ectoderm restricts the size of the animal plate and patterns neurogenesis in sea urchin embryos.
    Yaguchi S; Yaguchi J; Burke RD
    Development; 2006 Jun; 133(12):2337-46. PubMed ID: 16687447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multispectral labeling of embryonic cells with lipophilic carbocyanine dyes.
    Volnoukhin M; Brandhorst BP
    Mol Reprod Dev; 2015; 82(7-8):619-24. PubMed ID: 25820691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short-range cell-cell signals control ectodermal patterning in the oral region of the sea urchin embryo.
    Hardin J; Armstrong N
    Dev Biol; 1997 Feb; 182(1):134-49. PubMed ID: 9073456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduced O2 and elevated ROS in sea urchin embryos leads to defects in ectoderm differentiation.
    Agca C; Klein WH; Venuti JM
    Dev Dyn; 2009 Jul; 238(7):1777-87. PubMed ID: 19517573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial expression of alpha and beta tubulin genes in the late embryogenesis of the sea urchin Paracentrotus lividus.
    Casano C; Ragusa M; Cutrera M; Costa S; Gianguzza F
    Int J Dev Biol; 1996 Oct; 40(5):1033-41. PubMed ID: 8946250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. cis-Regulatory control of the initial neurogenic pattern of onecut gene expression in the sea urchin embryo.
    Barsi JC; Davidson EH
    Dev Biol; 2016 Jan; 409(1):310-318. PubMed ID: 26522848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The allocation of early blastomeres to the ectoderm and endoderm is variable in the sea urchin embryo.
    Logan CY; McClay DR
    Development; 1997 Jun; 124(11):2213-23. PubMed ID: 9187147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subequatorial cytoplasm plays an important role in ectoderm patterning in the sea urchin embryo.
    Kominami T; Akagawa M; Takata H
    Dev Growth Differ; 2006 Feb; 48(2):101-15. PubMed ID: 16512854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geometric control of ciliated band regulatory states in the sea urchin embryo.
    Barsi JC; Li E; Davidson EH
    Development; 2015 Mar; 142(5):953-61. PubMed ID: 25655703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene regulatory networks for ectoderm specification in sea urchin embryos.
    Su YH
    Biochim Biophys Acta; 2009 Apr; 1789(4):261-7. PubMed ID: 19429544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple signaling events specify ectoderm and pattern the oral-aboral axis in the sea urchin embryo.
    Wikramanayake AH; Klein WH
    Development; 1997 Jan; 124(1):13-20. PubMed ID: 9006063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-option of an oral-aboral patterning mechanism to control left-right differentiation: the direct-developing sea urchin Heliocidaris erythrogramma is sinistralized, not ventralized, by NiCl2.
    Minsuk SB; Raff RA
    Evol Dev; 2005; 7(4):289-300. PubMed ID: 15982366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.