BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 8253380)

  • 1. Locus-specific variation in phosphorylation state of RNA polymerase II in vivo: correlations with gene activity and transcript processing.
    Weeks JR; Hardin SE; Shen J; Lee JM; Greenleaf AL
    Genes Dev; 1993 Dec; 7(12A):2329-44. PubMed ID: 8253380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorylation of histone H3 at Ser10 facilitates RNA polymerase II release from promoter-proximal pausing in Drosophila.
    Ivaldi MS; Karam CS; Corces VG
    Genes Dev; 2007 Nov; 21(21):2818-31. PubMed ID: 17942706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorylation of RNA polymerase II C-terminal domain and transcriptional elongation.
    O'Brien T; Hardin S; Greenleaf A; Lis JT
    Nature; 1994 Jul; 370(6484):75-7. PubMed ID: 8015613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The interaction of RNA polymerase II with the adenovirus-2 major late promoter is precluded by phosphorylation of the C-terminal domain of subunit IIa.
    Chesnut JD; Stephens JH; Dahmus ME
    J Biol Chem; 1992 May; 267(15):10500-6. PubMed ID: 1316903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of RNA polymerase II localization during the cell cycle.
    Dirks RW; Snaar S
    Histochem Cell Biol; 1999 May; 111(5):405-10. PubMed ID: 10403120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Splicing factors associate with hyperphosphorylated RNA polymerase II in the absence of pre-mRNA.
    Kim E; Du L; Bregman DB; Warren SL
    J Cell Biol; 1997 Jan; 136(1):19-28. PubMed ID: 9008700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorylation dependence of the initiation of productive transcription of Balbiani ring 2 genes in living cells.
    Egyházi E; Ossoinak A; Pigon A; Holmgren C; Lee JM; Greenleaf AL
    Chromosoma; 1996 Mar; 104(6):422-33. PubMed ID: 8601337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fcp1 dephosphorylation of the RNA polymerase II C-terminal domain is required for efficient transcription of heat shock genes.
    Fuda NJ; Buckley MS; Wei W; Core LJ; Waters CT; Reinberg D; Lis JT
    Mol Cell Biol; 2012 Sep; 32(17):3428-37. PubMed ID: 22733996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drosophila ELL is associated with actively elongating RNA polymerase II on transcriptionally active sites in vivo.
    Gerber M; Ma J; Dean K; Eissenberg JC; Shilatifard A
    EMBO J; 2001 Nov; 20(21):6104-14. PubMed ID: 11689450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcription of heat shock gene loci versus non-heat shock loci in Chironomus polytene chromosomes: evidence for heat-induced formation of novel putative ribonucleoprotein particles (hsRNPs) in the major heat shock puffs.
    Sass H
    Chromosoma; 1995 Feb; 103(8):528-38. PubMed ID: 7621702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA polymerase II-mediated transcription at active loci does not require histone H3S10 phosphorylation in Drosophila.
    Cai W; Bao X; Deng H; Jin Y; Girton J; Johansen J; Johansen KM
    Development; 2008 Sep; 135(17):2917-25. PubMed ID: 18667461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcription factor and polymerase recruitment, modification, and movement on dhsp70 in vivo in the minutes following heat shock.
    Boehm AK; Saunders A; Werner J; Lis JT
    Mol Cell Biol; 2003 Nov; 23(21):7628-37. PubMed ID: 14560008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The transition of RNA polymerase II from initiation to elongation is associated with phosphorylation of the carboxyl-terminal domain of subunit IIa.
    Payne JM; Laybourn PJ; Dahmus ME
    J Biol Chem; 1989 Nov; 264(33):19621-9. PubMed ID: 2584185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coordination of transcription, RNA processing, and surveillance by P-TEFb kinase on heat shock genes.
    Ni Z; Schwartz BE; Werner J; Suarez JR; Lis JT
    Mol Cell; 2004 Jan; 13(1):55-65. PubMed ID: 14731394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorylation of the RNA polymerase II largest subunit during heat shock and inhibition of transcription in HeLa cells.
    Dubois MF; Bellier S; Seo SJ; Bensaude O
    J Cell Physiol; 1994 Mar; 158(3):417-26. PubMed ID: 8126066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Messenger RNA synthesis in mammalian cells is catalyzed by the phosphorylated form of RNA polymerase II.
    Cadena DL; Dahmus ME
    J Biol Chem; 1987 Sep; 262(26):12468-74. PubMed ID: 3624268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The large noncoding hsrω-n transcripts are essential for thermotolerance and remobilization of hnRNPs, HP1 and RNA polymerase II during recovery from heat shock in Drosophila.
    Lakhotia SC; Mallik M; Singh AK; Ray M
    Chromosoma; 2012 Feb; 121(1):49-70. PubMed ID: 21913129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of heat shock factor association with native gene loci in living cells.
    Yao J; Munson KM; Webb WW; Lis JT
    Nature; 2006 Aug; 442(7106):1050-3. PubMed ID: 16929308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of B52 within a chromosomal locus depends on the level of transcription.
    Champlin DT; Lis JT
    Mol Biol Cell; 1994 Jan; 5(1):71-9. PubMed ID: 8186467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcription-dependent redistribution of the large subunit of RNA polymerase II to discrete nuclear domains.
    Bregman DB; Du L; van der Zee S; Warren SL
    J Cell Biol; 1995 Apr; 129(2):287-98. PubMed ID: 7536746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.