These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 8253688)

  • 1. Nitrate as a preferred electron sink for the acetogen Clostridium thermoaceticum.
    Seifritz C; Daniel SL; Gössner A; Drake HL
    J Bacteriol; 1993 Dec; 175(24):8008-13. PubMed ID: 8253688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of nitrate on the autotrophic metabolism of the acetogens Clostridium thermoautotrophicum and Clostridium thermoaceticum.
    Fröstl JM; Seifritz C; Drake HL
    J Bacteriol; 1996 Aug; 178(15):4597-603. PubMed ID: 8755890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of an aromatic-dependent decarboxylase which provides growth-essential CO2 equivalents for the acetogenic (Wood) pathway of Clostridium thermoaceticum.
    Hsu TD; Lux MF; Drake HL
    J Bacteriol; 1990 Oct; 172(10):5901-7. PubMed ID: 2120194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a CO-dependent O-demethylating enzyme system from the acetogen Clostridium thermoaceticum.
    Wu ZR; Daniel SL; Drake HL
    J Bacteriol; 1988 Dec; 170(12):5747-50. PubMed ID: 3192514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrate-dependent regulation of acetate biosynthesis and nitrate respiration by Clostridium thermoaceticum.
    Arendsen AF; Soliman MQ; Ragsdale SW
    J Bacteriol; 1999 Mar; 181(5):1489-95. PubMed ID: 10049380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biotransformations of aromatic aldehydes by acetogenic bacteria.
    Lux MF; Keith E; Hsu TD; Drake HL
    FEMS Microbiol Lett; 1990 Jan; 55(1-2):73-7. PubMed ID: 2328911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolism of aromatic aldehydes as cosubstrates by the acetogen Clostridium formicoaceticum.
    Frank C; Schwarz U; Matthies C; Drake HL
    Arch Microbiol; 1998 Nov; 170(6):427-34. PubMed ID: 9799286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotransformations of carboxylated aromatic compounds by the acetogen Clostridium thermoaceticum: generation of growth-supportive CO2 equivalents under CO2-limited conditions.
    Hsu T; Daniel SL; Lux MF; Drake HL
    J Bacteriol; 1990 Jan; 172(1):212-7. PubMed ID: 2104603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the H2- and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui.
    Daniel SL; Hsu T; Dean SI; Drake HL
    J Bacteriol; 1990 Aug; 172(8):4464-71. PubMed ID: 2376565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptation of the acetogen Clostridium thermoautotrophicum to minimal medium.
    Savage MD; Drake HL
    J Bacteriol; 1986 Jan; 165(1):315-8. PubMed ID: 3941046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrite as an energy-conserving electron sink for the acetogenic bacterium Moorella thermoacetica.
    Seifritz C; Drake HL; Daniel SL
    Curr Microbiol; 2003 May; 46(5):329-33. PubMed ID: 12732959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anaerobic pathway for conversion of the methyl group of aromatic methyl ethers to acetic acid by Clostridium thermoaceticum.
    el Kasmi A; Rajasekharan S; Ragsdale SW
    Biochemistry; 1994 Sep; 33(37):11217-24. PubMed ID: 7727373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a minimally defined medium for the acetogen Clostridium thermoaceticum.
    Lundie LL; Drake HL
    J Bacteriol; 1984 Aug; 159(2):700-3. PubMed ID: 6746575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissimilatory nitrate reduction in Clostridium tertium.
    Hasan M; Hall JB
    Z Allg Mikrobiol; 1977; 17(7):501-6. PubMed ID: 203129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy-dependent, high-affinity transport of nickel by the acetogen Clostridium thermoaceticum.
    Lundie LL; Yang HC; Heinonen JK; Dean SI; Drake HL
    J Bacteriol; 1988 Dec; 170(12):5705-8. PubMed ID: 3192512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial strains from human feces that reduce CO2 to acetic acid.
    Wolin MJ; Miller TL
    Appl Environ Microbiol; 1993 Nov; 59(11):3551-6. PubMed ID: 8285662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utilization of methoxylated aromatic compounds by the acetogen Clostridium thermoaceticum: expression and specificity of the co-dependent O-demethylating activity.
    Daniel SL; Keith ES; Yang H; Lin YS; Drake HL
    Biochem Biophys Res Commun; 1991 Oct; 180(1):416-22. PubMed ID: 1930235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. the involvement of Nitric Oxide in the inhibition of the phosphoroclastic system in Clostridium sporogenes by sodium nitrite.
    Woods LF; Wood JM; Gibbs PA
    J Gen Microbiol; 1981 Aug; 125(2):399-406. PubMed ID: 6798167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The physiological function of nitrate reduction in Clostridium perfringens.
    Hasan SM; Hall JB
    J Gen Microbiol; 1975 Mar; 87(1):120-8. PubMed ID: 166143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The reduction of nitrate to ammonium by a Clostridium sp. isolated from soil.
    Caskey WH; Tiedje JM
    J Gen Microbiol; 1980 Jul; 119(1):217-23. PubMed ID: 6106043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.