BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 8253717)

  • 1. Cloning and expression of a human CDC42 GTPase-activating protein reveals a functional SH3-binding domain.
    Barfod ET; Zheng Y; Kuang WJ; Hart MJ; Evans T; Cerione RA; Ashkenazi A
    J Biol Chem; 1993 Dec; 268(35):26059-62. PubMed ID: 8253717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Concerted regulation of cell dynamics by BNIP-2 and Cdc42GAP homology/Sec14p-like, proline-rich, and GTPase-activating protein domains of a novel Rho GTPase-activating protein, BPGAP1.
    Shang X; Zhou YT; Low BC
    J Biol Chem; 2003 Nov; 278(46):45903-14. PubMed ID: 12944407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical comparisons of the Saccharomyces cerevisiae Bem2 and Bem3 proteins. Delineation of a limit Cdc42 GTPase-activating protein domain.
    Zheng Y; Hart MJ; Shinjo K; Evans T; Bender A; Cerione RA
    J Biol Chem; 1993 Nov; 268(33):24629-34. PubMed ID: 8227021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the interactions between the small GTPase Cdc42 and its GTPase-activating proteins and putative effectors. Comparison of kinetic properties of Cdc42 binding to the Cdc42-interactive domains.
    Zhang B; Wang ZX; Zheng Y
    J Biol Chem; 1997 Aug; 272(35):21999-2007. PubMed ID: 9268338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bridging Ral GTPase to Rho pathways. RLIP76, a Ral effector with CDC42/Rac GTPase-activating protein activity.
    Jullien-Flores V; Dorseuil O; Romero F; Letourneur F; Saragosti S; Berger R; Tavitian A; Gacon G; Camonis JH
    J Biol Chem; 1995 Sep; 270(38):22473-7. PubMed ID: 7673236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical studies of the mechanism of action of the Cdc42-GTPase-activating protein.
    Leonard DA; Lin R; Cerione RA; Manor D
    J Biol Chem; 1998 Jun; 273(26):16210-5. PubMed ID: 9632678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MgcRacGAP, a new human GTPase-activating protein for Rac and Cdc42 similar to Drosophila rotundRacGAP gene product, is expressed in male germ cells.
    Touré A; Dorseuil O; Morin L; Timmons P; Jégou B; Reibel L; Gacon G
    J Biol Chem; 1998 Mar; 273(11):6019-23. PubMed ID: 9497316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An SH3 domain-containing GTPase-activating protein for Rho and Cdc42 associates with focal adhesion kinase.
    Hildebrand JD; Taylor JM; Parsons JT
    Mol Cell Biol; 1996 Jun; 16(6):3169-78. PubMed ID: 8649427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel GTPase-activating protein for Rho interacts with a PDZ domain of the protein-tyrosine phosphatase PTPL1.
    Saras J; Franzén P; Aspenström P; Hellman U; Gonez LJ; Heldin CH
    J Biol Chem; 1997 Sep; 272(39):24333-8. PubMed ID: 9305890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A built-in arginine finger triggers the self-stimulatory GTPase-activating activity of rho family GTPases.
    Zhang B; Zhang Y; Collins CC; Johnson DI; Zheng Y
    J Biol Chem; 1999 Jan; 274(5):2609-12. PubMed ID: 9915787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of rhoGAP. A GTPase-activating protein for rho-related small GTPases.
    Lancaster CA; Taylor-Harris PM; Self AJ; Brill S; van Erp HE; Hall A
    J Biol Chem; 1994 Jan; 269(2):1137-42. PubMed ID: 8288572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CdGAP, a novel proline-rich GTPase-activating protein for Cdc42 and Rac.
    Lamarche-Vane N; Hall A
    J Biol Chem; 1998 Oct; 273(44):29172-7. PubMed ID: 9786927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structures of Cdc42 bound to the active and catalytically compromised forms of Cdc42GAP.
    Nassar N; Hoffman GR; Manor D; Clardy JC; Cerione RA
    Nat Struct Biol; 1998 Dec; 5(12):1047-52. PubMed ID: 9846874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the catalytic mechanism of GTPase-activating proteins: demonstration of the importance of switch domain stabilization in the stimulation of GTP hydrolysis.
    Fidyk NJ; Cerione RA
    Biochemistry; 2002 Dec; 41(52):15644-53. PubMed ID: 12501193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular functions of TC10, a Rho family GTPase: regulation of morphology, signal transduction and cell growth.
    Murphy GA; Solski PA; Jillian SA; Pérez de la Ossa P; D'Eustachio P; Der CJ; Rush MG
    Oncogene; 1999 Jul; 18(26):3831-45. PubMed ID: 10445846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of the human platelet GTPase activating protein for the CDC42Hs protein.
    Hart MJ; Shinjo K; Hall A; Evans T; Cerione RA
    J Biol Chem; 1991 Nov; 266(31):20840-8. PubMed ID: 1939135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning and characterization of GEF-H1, a microtubule-associated guanine nucleotide exchange factor for Rac and Rho GTPases.
    Ren Y; Li R; Zheng Y; Busch H
    J Biol Chem; 1998 Dec; 273(52):34954-60. PubMed ID: 9857026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of Cdc42 in complex with the GTPase-binding domain of the 'Wiskott-Aldrich syndrome' protein.
    Abdul-Manan N; Aghazadeh B; Liu GA; Majumdar A; Ouerfelli O; Siminovitch KA; Rosen MK
    Nature; 1999 May; 399(6734):379-83. PubMed ID: 10360578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and characterization of Ral-binding protein 1, a potential downstream target of Ral GTPases.
    Cantor SB; Urano T; Feig LA
    Mol Cell Biol; 1995 Aug; 15(8):4578-84. PubMed ID: 7623849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Cdc42 target protein with homology to the non-kinase domain of FER has a potential role in regulating the actin cytoskeleton.
    Aspenström P
    Curr Biol; 1997 Jul; 7(7):479-87. PubMed ID: 9210375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.