These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 8253804)
1. Absence of electron transport (Rho 0 state) restores growth of a manganese-superoxide dismutase-deficient Saccharomyces cerevisiae in hyperoxia. Evidence for electron transport as a major source of superoxide generation in vivo. Guidot DM; McCord JM; Wright RM; Repine JE J Biol Chem; 1993 Dec; 268(35):26699-703. PubMed ID: 8253804 [TBL] [Abstract][Full Text] [Related]
2. Mitochondrial respiration scavenges extramitochondrial superoxide anion via a nonenzymatic mechanism. Guidot DM; Repine JE; Kitlowski AD; Flores SC; Nelson SK; Wright RM; McCord JM J Clin Invest; 1995 Aug; 96(2):1131-6. PubMed ID: 7635949 [TBL] [Abstract][Full Text] [Related]
3. Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae. Mitochondrial production of toxic oxygen species in vivo. Longo VD; Gralla EB; Valentine JS J Biol Chem; 1996 May; 271(21):12275-80. PubMed ID: 8647826 [TBL] [Abstract][Full Text] [Related]
4. Regulation of manganese superoxide dismutase in Saccharomyces cerevisiae. The role of respiratory chain activity. Westerbeek-Marres CA; Moore MM; Autor AP Eur J Biochem; 1988 Jul; 174(4):611-20. PubMed ID: 2839336 [TBL] [Abstract][Full Text] [Related]
10. Metallation state of human manganese superoxide dismutase expressed in Saccharomyces cerevisiae. Whittaker MM; Whittaker JW Arch Biochem Biophys; 2012 Jul; 523(2):191-7. PubMed ID: 22561997 [TBL] [Abstract][Full Text] [Related]
11. Only one of a wide assortment of manganese-containing SOD mimicking compounds rescues the slow aerobic growth phenotypes of both Escherichia coli and Saccharomyces cerevisiae strains lacking superoxide dismutase enzymes. Munroe W; Kingsley C; Durazo A; Gralla EB; Imlay JA; Srinivasan C; Valentine JS J Inorg Biochem; 2007 Nov; 101(11-12):1875-82. PubMed ID: 17723242 [TBL] [Abstract][Full Text] [Related]
12. The interaction of mitochondrial iron with manganese superoxide dismutase. Naranuntarat A; Jensen LT; Pazicni S; Penner-Hahn JE; Culotta VC J Biol Chem; 2009 Aug; 284(34):22633-40. PubMed ID: 19561359 [TBL] [Abstract][Full Text] [Related]
13. Six-coordinate manganese(3+) in catalysis by yeast manganese superoxide dismutase. Sheng Y; Butler Gralla E; Schumacher M; Cascio D; Cabelli DE; Valentine JS Proc Natl Acad Sci U S A; 2012 Sep; 109(36):14314-9. PubMed ID: 22908245 [TBL] [Abstract][Full Text] [Related]
14. [Role of Cu, Zn- and Mn-containing superoxide dismutases during the yeast Saccharomyces cerevisiae growing on ethanol and glycerol]. Mandryk SIa; Lushchak OV; Semchyshyn HM; Lushchak VI Mikrobiol Z; 2007; 69(2):35-42. PubMed ID: 17494333 [TBL] [Abstract][Full Text] [Related]
15. A yeast mutant lacking mitochondrial manganese-superoxide dismutase is hypersensitive to oxygen. van Loon AP; Pesold-Hurt B; Schatz G Proc Natl Acad Sci U S A; 1986 Jun; 83(11):3820-4. PubMed ID: 3520557 [TBL] [Abstract][Full Text] [Related]
16. Growth on ethanol results in co-ordinated Saccharomyces cerevisiae response to inactivation of genes encoding superoxide dismutases. Lushchak OV; Semchyshyn HM; Lushchak VI Redox Rep; 2007; 12(4):181-8. PubMed ID: 17705988 [TBL] [Abstract][Full Text] [Related]
17. The PmSOD1 gene of the protistan parasite Perkinsus marinus complements the sod2Delta mutant of Saccharomyces cerevisiae, and directs an iron superoxide dismutase to mitochondria. Schott EJ; Vasta GR Mol Biochem Parasitol; 2003 Jan; 126(1):81-92. PubMed ID: 12554087 [TBL] [Abstract][Full Text] [Related]
18. Mitochondrial superoxide mediates labile iron level: evidence from Mn-SOD-transgenic mice and heterozygous knockout mice and isolated rat liver mitochondria. Ibrahim WH; Habib HM; Kamal H; St Clair DK; Chow CK Free Radic Biol Med; 2013 Dec; 65():143-149. PubMed ID: 23792772 [TBL] [Abstract][Full Text] [Related]
19. Iron, copper, and manganese complexes with in vitro superoxide dismutase and/or catalase activities that keep Saccharomyces cerevisiae cells alive under severe oxidative stress. Ribeiro TP; Fernandes C; Melo KV; Ferreira SS; Lessa JA; Franco RW; Schenk G; Pereira MD; Horn A Free Radic Biol Med; 2015 Mar; 80():67-76. PubMed ID: 25511255 [TBL] [Abstract][Full Text] [Related]
20. Manganese activation of superoxide dismutase 2 in the mitochondria of Saccharomyces cerevisiae. Luk E; Yang M; Jensen LT; Bourbonnais Y; Culotta VC J Biol Chem; 2005 Jun; 280(24):22715-20. PubMed ID: 15851472 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]