BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 8253826)

  • 1. Comparison of the cardiac force-time integral with energetics using a cardiac muscle model.
    Taylor TW; Goto Y; Hata K; Takasago T; Saeki A; Nishioka T; Suga H
    J Biomech; 1993 Oct; 26(10):1217-25. PubMed ID: 8253826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variable crossbridge cycling-ATP coupling accounts for cardiac mechanoenergetics.
    Taylor TW; Suga H
    Adv Exp Med Biol; 1993; 332():775-82; discussion 782-3. PubMed ID: 8109387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myocardial mechanics and the Fenn effect determined from a cardiac muscle crossbridge model.
    Taylor TW; Goto Y; Suga H
    Med Biol Eng Comput; 1993 Jul; 31(4):377-83. PubMed ID: 8231300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cardiac muscle fiber force versus length determined by a cardiac muscle crossbridge model.
    Taylor TW; Goto Y; Suga H
    Heart Vessels; 1992; 7(4):200-5. PubMed ID: 1336775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardiac mechanoenergetics replicated by cross-bridge model.
    Vendelin M; Bovendeerd PH; Arts T; Engelbrecht J; van Campen DH
    Ann Biomed Eng; 2000 Jun; 28(6):629-40. PubMed ID: 10983709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variable cross-bridge cycling-ATP coupling accounts for cardiac mechanoenergetics.
    Taylor TW; Goto Y; Suga H
    Am J Physiol; 1993 Mar; 264(3 Pt 2):H994-1004. PubMed ID: 8456998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cardiac quick-release contraction mechanoenergetics analysis using a cardiac muscle cross-bridge model.
    Taylor TW; Goto Y; Hata K; Takasago T; Saeki A; Nishioka T; Suga H
    Am J Physiol; 1995 Jun; 268(6 Pt 2):H2544-52. PubMed ID: 7611504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATP splitting by half the cross-bridges can explain the twitch energetics of mouse papillary muscle.
    Widén C; Barclay CJ
    J Physiol; 2006 May; 573(Pt 1):5-15. PubMed ID: 16497711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of isoproterenol on contractile protein function, excitation-contraction coupling, and energy turnover of isolated nonfailing human myocardium.
    Hasenfuss G; Mulieri LA; Leavitt BJ; Alpert NR
    J Mol Cell Cardiol; 1994 Nov; 26(11):1461-9. PubMed ID: 7897670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of energy consumption in cardiac muscle: analysis of isometric contractions.
    Landesberg A; Sideman S
    Am J Physiol; 1999 Mar; 276(3):H998-H1011. PubMed ID: 10070085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energetics of isometric force development in control and volume-overload human myocardium. Comparison with animal species.
    Hasenfuss G; Mulieri LA; Blanchard EM; Holubarsch C; Leavitt BJ; Ittleman F; Alpert NR
    Circ Res; 1991 Mar; 68(3):836-46. PubMed ID: 1742869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of myosin isoforms on tension cost and crossbridge kinetics in skinned rat cardiac muscle.
    Rossmanith GH; Hamilton AM; Hoh JF
    Clin Exp Pharmacol Physiol; 1995; 22(6-7):423-9. PubMed ID: 8582093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sliding distance of actin filament induced by a myosin crossbridge during one ATP hydrolysis cycle.
    Yanagida T; Arata T; Oosawa F
    Nature; 1985 Jul 25-31; 316(6026):366-9. PubMed ID: 4022127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATPase activity and force production in skinned rat cardiac muscle under isometric and dynamic conditions.
    Ebus JP; Stienen GJ
    J Mol Cell Cardiol; 1996 Aug; 28(8):1747-57. PubMed ID: 8877784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energetics of the Frank-Starling effect in rabbit myocardium: economy and efficiency depend on muscle length.
    Holmes JW; Hünlich M; Hasenfuss G
    Am J Physiol Heart Circ Physiol; 2002 Jul; 283(1):H324-30. PubMed ID: 12063305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the solutions of Huxley-type models in cardiac muscle fiber contractions.
    Taylor TW; Goto Y; Suga H
    J Theor Biol; 1993 Dec; 165(3):409-16. PubMed ID: 8114504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adenosine 5'-triphosphate consumption by smooth muscle as predicted by the coupled four-state crossbridge model.
    Hai CM; Murphy RA
    Biophys J; 1992 Feb; 61(2):530-41. PubMed ID: 1547336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of calcium sensitizers on intracellular calcium handling and myocardial energetics.
    Hasenfuss G; Pieske B; Kretschmann B; Holubarsch C; Alpert NR; Just H
    J Cardiovasc Pharmacol; 1995; 26 Suppl 1():S45-51. PubMed ID: 8907130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crossbridge scheme and the kinetic constants of elementary steps deduced from chemically skinned papillary and trabecular muscles of the ferret.
    Kawai M; Saeki Y; Zhao Y
    Circ Res; 1993 Jul; 73(1):35-50. PubMed ID: 8508533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in crossbridge mechanical properties in diabetic rat cardiomyopathy.
    Joseph T; Coirault C; Dubourg O; Lecarpentier Y
    Basic Res Cardiol; 2005 May; 100(3):231-9. PubMed ID: 15645163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.