These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 8254307)
1. New derivatives of TOL plasmid pWW0. Sarand I; Mäe A; Vilu R; Heinaru A J Gen Microbiol; 1993 Oct; 139(10):2379-85. PubMed ID: 8254307 [TBL] [Abstract][Full Text] [Related]
2. Loss of the toluene-xylene catabolic genes of TOL plasmid pWW0 during growth of Pseudomonas putida on benzoate is due to a selective growth advantage of 'cured' segregants. Williams PA; Taylor SD; Gibb LE J Gen Microbiol; 1988 Jul; 134(7):2039-48. PubMed ID: 3246596 [TBL] [Abstract][Full Text] [Related]
3. Loss of the TOL meta-cleavage pathway functions of Pseudomonas putida strain PaW1 (pWW0) during growth on toluene. Brinkmann U; Ramos JL; Reineke W J Basic Microbiol; 1994; 34(5):303-9. PubMed ID: 7996396 [TBL] [Abstract][Full Text] [Related]
4. Evolutionary conservation of genes coding for meta pathway enzymes within TOL plasmids pWW0 and pWW53. Keil H; Keil S; Pickup RW; Williams PA J Bacteriol; 1985 Nov; 164(2):887-95. PubMed ID: 2997136 [TBL] [Abstract][Full Text] [Related]
5. Conjugal transfer of a TOL-like plasmid and extension of the catabolic potential of Pseudomonas putida F1. Hallier-Soulier S; Ducrocq V; Truffaut N Can J Microbiol; 1999 Nov; 45(11):898-904. PubMed ID: 10588042 [TBL] [Abstract][Full Text] [Related]
6. Characterization of Pseudomonas putida mutants unable to catabolize benzoate: cloning and characterization of Pseudomonas genes involved in benzoate catabolism and isolation of a chromosomal DNA fragment able to substitute for xylS in activation of the TOL lower-pathway promoter. Jeffrey WH; Cuskey SM; Chapman PJ; Resnick S; Olsen RH J Bacteriol; 1992 Aug; 174(15):4986-96. PubMed ID: 1629155 [TBL] [Abstract][Full Text] [Related]
7. Physical map of the aromatic amine and m-toluate catabolic plasmid pTDN1 in Pseudomonas putida: location of a unique meta-cleavage pathway. Saint CP; McClure NC; Venables WA J Gen Microbiol; 1990 Apr; 136(4):615-25. PubMed ID: 2168927 [TBL] [Abstract][Full Text] [Related]
8. Stability of TOL plasmid pWW0 in Pseudomonas putida mt-2 under non-selective conditions in continuous culture. Duetz WA; van Andel JG J Gen Microbiol; 1991 Jun; 137(6):1369-74. PubMed ID: 1919511 [TBL] [Abstract][Full Text] [Related]
9. The TOL plasmid pWW0 xylN gene product from Pseudomonas putida is involved in m-xylene uptake. Kasai Y; Inoue J; Harayama S J Bacteriol; 2001 Nov; 183(22):6662-6. PubMed ID: 11673437 [TBL] [Abstract][Full Text] [Related]
10. Regulation of the catechol 1,2-dioxygenase- and phenol monooxygenase-encoding pheBA operon in Pseudomonas putida PaW85. Kasak L; Hôrak R; Nurk A; Talvik K; Kivisaar M J Bacteriol; 1993 Dec; 175(24):8038-42. PubMed ID: 8253692 [TBL] [Abstract][Full Text] [Related]
11. Excision and integration of degradative pathway genes from TOL plasmid pWW0. Jeenes DJ; Williams PA J Bacteriol; 1982 Apr; 150(1):188-94. PubMed ID: 7061392 [TBL] [Abstract][Full Text] [Related]
12. Physical and functional mapping of two cointegrate plasmids derived from RP4 and TOL plasmid pDK1. Shaw LE; Williams PA J Gen Microbiol; 1988 Sep; 134(9):2463-74. PubMed ID: 3076182 [TBL] [Abstract][Full Text] [Related]
13. XylUW, two genes at the start of the upper pathway operon of TOL plasmid pWW0, appear to play no essential part in determining its catabolic phenotype. Williams PA; Shaw LM; Pitt CW; Vrecl M Microbiology (Reading); 1997 Jan; 143 ( Pt 1)():101-107. PubMed ID: 9025283 [TBL] [Abstract][Full Text] [Related]
14. Organisation of the tmb catabolic operons of Pseudomonas putida TMB and evolutionary relationship with the xyl operons of the TOL plasmid pWW0. Favaro R; Bernasconi C; Passini N; Bertoni G; Bestetti G; Galli E; Dehò G Gene; 1996 Dec; 182(1-2):189-93. PubMed ID: 8982087 [TBL] [Abstract][Full Text] [Related]
15. High-resolution analysis of the m-xylene/toluene biodegradation subtranscriptome of Pseudomonas putida mt-2. Kim J; Pérez-Pantoja D; Silva-Rocha R; Oliveros JC; de Lorenzo V Environ Microbiol; 2016 Oct; 18(10):3327-3341. PubMed ID: 26373670 [TBL] [Abstract][Full Text] [Related]
16. Isolation and characterization of spontaneously occurring TOL plasmid mutants of Pseudomonas putida HS1. Kunz DA; Chapman PJ J Bacteriol; 1981 Jun; 146(3):952-64. PubMed ID: 7240090 [TBL] [Abstract][Full Text] [Related]
17. Implications of the xylQ gene of TOL plasmid pWW102 for the evolution of aromatic catabolic pathways. Aemprapa S; Williams PA Microbiology (Reading); 1998 May; 144 ( Pt 5)():1387-1396. PubMed ID: 9611813 [TBL] [Abstract][Full Text] [Related]
18. Deepening TOL and TOU catabolic pathways of Pseudomonas sp. OX1: cloning, sequencing and characterization of the lower pathways. Bertini L; Cafaro V; Proietti S; Caporale C; Capasso P; Caruso C; Di Donato A Biochimie; 2013 Feb; 95(2):241-50. PubMed ID: 23009925 [TBL] [Abstract][Full Text] [Related]
19. Localization and functional analysis of transposon mutations in regulatory genes of the TOL catabolic pathway. Franklin FC; Lehrbach PR; Lurz R; Rueckert B; Bagdasarian M; Timmis KN J Bacteriol; 1983 May; 154(2):676-85. PubMed ID: 6188746 [TBL] [Abstract][Full Text] [Related]
20. Comparison of the nucleotide sequences of the meta-cleavage pathway genes of TOL plasmid pWW0 from Pseudomonas putida with other meta-cleavage genes suggests that both single and multiple nucleotide substitutions contribute to enzyme evolution. Harayama S; Rekik M Mol Gen Genet; 1993 May; 239(1-2):81-9. PubMed ID: 8510667 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]