BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 8254535)

  • 1. N-ethylmaleimide discriminates between two lysine transport systems in human erythrocytes.
    Devés R; Angelo S; Chávez P
    J Physiol; 1993 Aug; 468():753-66. PubMed ID: 8254535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of two leucine-sensitive lysine transport activities in human placental basal membrane.
    Furesz TC; Smith CH
    Placenta; 1997 Nov; 18(8):649-55. PubMed ID: 9364600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amino acid transport system y+L of human erythrocytes: specificity and cation dependence of the translocation step.
    Angelo S; Devés R
    J Membr Biol; 1994 Aug; 141(2):183-92. PubMed ID: 7807519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cation and harmaline interactions with Na(+)-independent dibasic amino acid transport system y+ in human erythrocytes and in erythrocytes from a primitive vertebrate the pacific hagfish (Eptatretus stouti).
    Young JD; Fincham DA; Harvey CM
    Biochim Biophys Acta; 1991 Nov; 1070(1):111-8. PubMed ID: 1751517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a new transport system (y+L) in human erythrocytes that recognizes lysine and leucine with high affinity.
    Devés R; Chavez P; Boyd CA
    J Physiol; 1992 Aug; 454():491-501. PubMed ID: 1474499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple pathways for L-methionine transport in brush-border membrane vesicles from chicken jejunum.
    Soriano-García JF; Torras-Llort M; Ferrer R; Moreto M
    J Physiol; 1998 Jun; 509 ( Pt 2)(Pt 2):527-39. PubMed ID: 9575301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation by N-ethylmaleimide of a latent K+-Cl- flux in human red blood cells.
    Lauf PK; Adragna NC; Garay RP
    Am J Physiol; 1984 May; 246(5 Pt 1):C385-90. PubMed ID: 6720936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. System y+L-like activities account for high and low amino-acid transport phenotypes in chicken erythrocytes.
    Vargas M; Devés R
    J Membr Biol; 2001 Oct; 183(3):183-93. PubMed ID: 11696860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitric oxide synthesis requires activity of the cationic and neutral amino acid transport system y+L in human umbilical vein endothelium.
    Arancibia-Garavilla Y; Toledo F; Casanello P; Sobrevia L
    Exp Physiol; 2003 Nov; 88(6):699-710. PubMed ID: 14603368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sodium-independent lysine uptake by the BeWo choriocarcinoma cell line.
    Way BA; Furesz TC; Schwarz JK; Moe AJ; Smith CH
    Placenta; 1998 May; 19(4):323-8. PubMed ID: 9639329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. System y+L: the broad scope and cation modulated amino acid transporter.
    Devés R; Angelo S; Rojas AM
    Exp Physiol; 1998 Mar; 83(2):211-20. PubMed ID: 9568481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cation transport in oxidant-stressed human erythrocytes: heightened N-ethylmaleimide activation of passive K+ influx after mild peroxidation.
    Sheerin HE; Snyder LM; Fairbanks G
    Biochim Biophys Acta; 1989 Jul; 983(1):65-76. PubMed ID: 2758051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of cysteine residues in human cationic amino acid transporter hCAT-2A that are targets for inhibition by N-ethylmaleimide.
    Beyer SR; Mallmann RT; Jaenecke I; Habermeier A; Boissel JP; Closs EI
    J Biol Chem; 2013 Oct; 288(42):30411-30419. PubMed ID: 24019517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple components of arginine and phenylalanine transport induced in neutral and basic amino acid transporter-cRNA-injected Xenopus oocytes.
    Peter GJ; Davidson IG; Ahmed A; McIlroy L; Forrester AR; Taylor PM
    Biochem J; 1996 Sep; 318 ( Pt 3)(Pt 3):915-22. PubMed ID: 8836138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thiol protein defect in sodium-lithium countertransport in subset of essential hypertension.
    Mead P; Wilkinson R; Thomas TH
    Hypertension; 1999 Dec; 34(6):1275-80. PubMed ID: 10601130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane potential dependence of the kinetics of cationic amino acid transport systems in human placenta.
    Eleno N; Devés R; Boyd CA
    J Physiol; 1994 Sep; 479 ( Pt 2)(Pt 2):291-300. PubMed ID: 7799228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discrimination of Na+-independent transport systems L, T, and asc in erythrocytes. Na+ independence of the latter a consequence of cell maturation?
    Vadgama JV; Christensen HN
    J Biol Chem; 1985 Mar; 260(5):2912-21. PubMed ID: 3919011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loop diuretic and anion modification of NEM-induced K transport in human red blood cells.
    Berkowitz LR
    Am J Physiol; 1990 Apr; 258(4 Pt 1):C622-9. PubMed ID: 2333949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lysine uptake by human placental microvillous membrane: comparison of system y+ with basal membrane.
    Furesz TC; Moe AJ; Smith CH
    Am J Physiol; 1995 Mar; 268(3 Pt 1):C755-61. PubMed ID: 7534987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a novel variant of amino acid transport system asc in erythrocytes from Przewalski's horse (Equus przewalskii).
    Fincham DA; Ellory JC; Young JD
    Can J Physiol Pharmacol; 1992 Aug; 70(8):1117-27. PubMed ID: 1473044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.