BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 8255)

  • 1. Colchicine, cytochalasin B, cyclic AMP, and pigment granule translocation in melanophores of Uca pugilator and Hemigrapsus oregonensis (Crustacea: Decapoda).
    Lambert DT; Crowe JH
    Comp Biochem Physiol C Comp Pharmacol; 1976; 54(2):115-21. PubMed ID: 8255
    [No Abstract]   [Full Text] [Related]  

  • 2. Evidence for a non-microtubular colchicine effect in pigment granule aggregation in melanophores of the fiddler crab, Uca pugilator.
    Lambert DT; Fingerman M
    Comp Biochem Physiol C Comp Pharmacol; 1976; 53(1):25-8. PubMed ID: 3378
    [No Abstract]   [Full Text] [Related]  

  • 3. Comparison of the effects of illumination on the melanophores of intact and eyestalkless fiddler crabs, Uca pugilator, and inhibition of the primary response by cytochalasin B.
    Coohill TP; Fingerman M
    Experientia; 1976 May; 32(5):569-70. PubMed ID: 1278294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microtubules, microfilaments, and pigment movement in the chromatophores of Palaemonetes vulgaris (Crustacea).
    Robison WG; Charlton JS
    J Exp Zool; 1973 Dec; 186(3):279-304. PubMed ID: 4765352
    [No Abstract]   [Full Text] [Related]  

  • 5. The effect of cytochalasin B on pigment dispersion and aggregation in perfused Xenopus laevis tailfin melanophores.
    Fisher M; Lyerla TA
    J Cell Physiol; 1974 Feb; 83(1):117-29. PubMed ID: 4360295
    [No Abstract]   [Full Text] [Related]  

  • 6. The changes in cell shape during pigment migration in melanophores of a teleost, Oryzias latipes.
    Obika M
    J Exp Zool; 1975 Mar; 191(3):427-32. PubMed ID: 1127404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mechanism of action for the inhibition of black pigment dispersion in the fiddler crab, Uca pugilator, by naphthalene.
    Staub GC; Fingerman M
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1984; 79(2):447-53. PubMed ID: 6151480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microtubule--and microfilament--disrupting drugs and melanosome migration in melanophores of Papiliochromis ramirezi (Cichlidae, Teleostei).
    Visconti MA; Castrucci AM
    An Acad Bras Cienc; 1985 Jun; 57(2):233-7. PubMed ID: 4096435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanism of microtubule-dependent movement of pigment granules in teleost chromatophores.
    Murphy DB
    Ann N Y Acad Sci; 1975 Jun; 253():692-701. PubMed ID: 1056758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of cyclic AMP and cytochalasin B on tissue cultured melanophores of Xenopus laevis.
    Lyerla TA; Novales RR
    J Cell Physiol; 1972 Oct; 80(2):243-51. PubMed ID: 4344774
    [No Abstract]   [Full Text] [Related]  

  • 11. An endogenous 5-HT(7) receptor mediates pigment granule dispersion in Xenopus laevis melanophores.
    Teh MT; Sugden D
    Br J Pharmacol; 2001 Apr; 132(8):1799-808. PubMed ID: 11309252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subtypes of beta adrenergic receptors mediating pigment dispersion in chromatophores of the medaka, Oryzias latipes.
    Morishita F; Katayama H; Yamada K
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1985; 81(2):279-85. PubMed ID: 2861947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of pigment movement by cytochalasin B in the chromatophores of the sea urchin Centrostephanus longispinus.
    Dambach M; Weber W
    Comp Biochem Physiol C Comp Pharmacol; 1975 Jan; 50(1):49-52. PubMed ID: 240622
    [No Abstract]   [Full Text] [Related]  

  • 14. Further evidence for norepinephrine as a neurotransmitter stimulating release of melanin-dispersing hormone in the fiddler crab, Uca pugilator: the changes in the melanophores of the crabs following reserpine, 6-hydroxydopamine and bretylium administration.
    Hanumante MM; Fingerman M
    Gen Pharmacol; 1982; 13(2):99-103. PubMed ID: 7095397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pigment movements in fish melanophores: morphological and physiolgical studies. IV. The effect of cyclic adenosine monophosphate on normal and vinblastine treated melanophores.
    Schliwa M; Bereiter-Hahn J
    Cell Tissue Res; 1974; 151(4):423-32. PubMed ID: 4371981
    [No Abstract]   [Full Text] [Related]  

  • 16. The role of microtubules in the movement of pigment granules in teleost melanophores.
    Murphy DB; Tilney LG
    J Cell Biol; 1974 Jun; 61(3):757-79. PubMed ID: 4836391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A microtuble-independent component may be involved in granule transport in pigment cells.
    Schliwa M; Euteneuer U
    Nature; 1978 Jun; 273(5663):556-8. PubMed ID: 351407
    [No Abstract]   [Full Text] [Related]  

  • 18. Receptor mechanisms in fish chromatophores--III. Neurally controlled melanosome aggregation in a siluroid (Parasilurus asotus) is strangely mediated by cholinoceptors.
    Fujii R; Miyashita Y
    Comp Biochem Physiol C Comp Pharmacol; 1976; 55(1):43-9. PubMed ID: 8272
    [No Abstract]   [Full Text] [Related]  

  • 19. Bidirectional pigment granule movements of melanophores are regulated by protein phosphorylation and dephosphorylation.
    Rozdzial MM; Haimo LT
    Cell; 1986 Dec; 47(6):1061-70. PubMed ID: 3022941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of ACTH, adenyl compounds, and methylxanthines on goldfish erythrophores in culture.
    Ozato K
    Gen Comp Endocrinol; 1977 Mar; 31(3):335-42. PubMed ID: 192632
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.