These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 8255)

  • 21. The effects of lumicolchicine, colchicine and vinblastine on pigment migration in fish chromatophores.
    Obika M; Turner WA; Negishi S; Menter DG; Tchen TT; Taylor JD
    J Exp Zool; 1978 Jul; 205(1):95-110. PubMed ID: 670923
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pertussis toxin sensitive photoaggregation of pigment in isolated Xenopus tail-fin melanophores.
    Rollag MD
    Photochem Photobiol; 1993 May; 57(5):862-6. PubMed ID: 8393196
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Circadian rhythm of pigment migration induced by chromatrophorotropins in melanophores of the crab Chasmagnathus granulata.
    Granato FC; Tironi TS; Maciel FE; Rosa CE; Vargas MA; Nery LE
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Jul; 138(3):313-9. PubMed ID: 15313485
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mitotic and pigment-translocating activities of cultured chromatophores of the guppy, Lebistes reticulatus.
    Powers EA; Rao KR
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1984; 78(1):21-9. PubMed ID: 6146472
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein kinase C activation antagonizes melatonin-induced pigment aggregation in Xenopus laevis melanophores.
    Sugden D; Rowe SJ
    J Cell Biol; 1992 Dec; 119(6):1515-21. PubMed ID: 1334961
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reactivation of vesicle transport in lysed teleost melanophores.
    Haimo L
    Methods Enzymol; 1998; 298():389-99. PubMed ID: 9751898
    [No Abstract]   [Full Text] [Related]  

  • 27. Conservation of the chromatophore pigment response.
    Dukovcic SR; Hutchison JR; Trempy JE
    J Appl Toxicol; 2010 Aug; 30(6):574-81. PubMed ID: 20809546
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cytoskeleton and PCH-induced pigment aggregation in Macrobrachium potiuna erythrophores.
    Tuma MC; Josefsson L; Castrucci AM
    Pigment Cell Res; 1995 Aug; 8(4):215-20. PubMed ID: 8610073
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of organelle transport in melanophores by calcineurin.
    Thaler CD; Haimo LT
    J Cell Biol; 1990 Nov; 111(5 Pt 1):1939-48. PubMed ID: 2172259
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A spring-matrix model for pigment translocation in the red ovarian chromatophores of the freshwater shrimp Macrobrachium olfersi (Crustacea, Decapoda).
    Boyle RT; McNamara JC
    Biol Bull; 2008 Apr; 214(2):111-21. PubMed ID: 18400993
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photomechanical migrations of pigment granules along the retinula cells of the crayfish.
    Frixione E; Aréchiga H
    J Neurobiol; 1979 Nov; 10(6):573-90. PubMed ID: 521814
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The protein kinase A-anchoring protein moesin is bound to pigment granules in melanophores.
    Semenova I; Ikeda K; Ivanov P; Rodionov V
    Traffic; 2009 Feb; 10(2):153-60. PubMed ID: 18980611
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pigment granule translocation in red ovarian chromatophores from the palaemonid shrimp Macrobrachium olfersi (Weigmann, 1836): functional roles for the cytoskeleton and its molecular motors.
    Milograna SR; Ribeiro MR; Baqui MM; McNamara JC
    Comp Biochem Physiol A Mol Integr Physiol; 2014 Dec; 178():90-101. PubMed ID: 25182860
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Movement of pigment granules within melanophores of an isolated fish scale. Effects of cytochalasin B on melanophores.
    Ota T
    Biol Bull; 1974 Apr; 146(2):258-66. PubMed ID: 4822764
    [No Abstract]   [Full Text] [Related]  

  • 35. Inhibitions by colchicine, vinblastine and cytochalasin-B of the stimulatory effect of the cytoplasmic fraction on catecholamine release from adrenomedullary granules.
    Oka M; Kashimoto T; Izumi F
    Jpn J Pharmacol; 1975 Feb; 25(1):79-81. PubMed ID: 1152313
    [No Abstract]   [Full Text] [Related]  

  • 36. Switching between microtubule- and actin-based transport systems in melanophores is controlled by cAMP levels.
    Rodionov V; Yi J; Kashina A; Oladipo A; Gross SP
    Curr Biol; 2003 Oct; 13(21):1837-47. PubMed ID: 14588239
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MCH-induced pigment aggregation in teleost melanophores is associated with a cAMP reduction.
    Svensson SP; Norberg T; Andersson RG; Grundström N; Karlsson JO
    Life Sci; 1991; 48(21):2043-6. PubMed ID: 1851917
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence for several roles of dynein in pigment transport in melanophores.
    Nilsson H; Wallin M
    Cell Motil Cytoskeleton; 1997; 38(4):397-409. PubMed ID: 9415381
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Panax ginseng induces anterograde transport of pigment organelles in Xenopus melanophores.
    Eriksson TL; Svensson SP; Lundström I; Persson K; Andersson TP; Andersson RG
    J Ethnopharmacol; 2008 Sep; 119(1):17-23. PubMed ID: 18639398
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Suppression of cAMP-induced pigment granule aggregation in RPE by organic anion transport inhibitors.
    García DM; Burnside B
    Invest Ophthalmol Vis Sci; 1994 Jan; 35(1):178-88. PubMed ID: 8300345
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.