These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 8255224)

  • 21. Quantum chemical studies of proton-coupled electron transfer in metalloenzymes.
    Siegbahn PE; Blomberg MR
    Chem Rev; 2010 Dec; 110(12):7040-61. PubMed ID: 20677732
    [No Abstract]   [Full Text] [Related]  

  • 22. Study of metalloproteins using continuous wave electron paramagnetic resonance (EPR).
    Gambarelli S; Maurel V
    Methods Mol Biol; 2014; 1122():139-51. PubMed ID: 24639258
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calix[4]arenes linked to multiple bidentate N-donors: potential ligands for synthetic modeling of multinuclear metalloenzymes.
    Spencer DJ; Johnson BJ; Johnson BJ; Tolman WB
    Org Lett; 2002 Apr; 4(8):1391-3. PubMed ID: 11950370
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The scanning probe microscopy of metalloproteins and metalloenzymes.
    Davis JJ; Hill HA
    Chem Commun (Camb); 2002 Mar; (5):393-401. PubMed ID: 12120511
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optically detected magnetic resonance of photoexcited triplet states.
    Maki AH
    Methods Enzymol; 1995; 246():610-38. PubMed ID: 7752940
    [No Abstract]   [Full Text] [Related]  

  • 26. Direct and indirect electrochemical investigations of metalloenzymes.
    Hill HA; Hunt NI
    Methods Enzymol; 1993; 227():501-22. PubMed ID: 8255235
    [No Abstract]   [Full Text] [Related]  

  • 27. Electron-paramagnetic-resonance spectroscopy in biochemistry: past, present and future.
    Beinert H
    Biochem Soc Trans; 1985 Jun; 13(3):542-7. PubMed ID: 2993060
    [No Abstract]   [Full Text] [Related]  

  • 28. Design of artificial metalloproteins/metalloenzymes by tuning noncovalent interactions.
    Hirota S; Lin YW
    J Biol Inorg Chem; 2018 Jan; 23(1):7-25. PubMed ID: 29218629
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The electron paramagnetic resonance of metalloproteins.
    Palmer G
    Biochem Soc Trans; 1985 Jun; 13(3):548-60. PubMed ID: 2993061
    [No Abstract]   [Full Text] [Related]  

  • 30. A new Q-band EPR probe for quantitative studies of even electron metalloproteins.
    Petasis DT; Hendrich MP
    J Magn Reson; 1999 Feb; 136(2):200-6. PubMed ID: 9986761
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design of functional metalloproteins.
    Lu Y; Yeung N; Sieracki N; Marshall NM
    Nature; 2009 Aug; 460(7257):855-62. PubMed ID: 19675646
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Highly efficient and site-selective phosphane modification of proteins through hydrazone linkage: development of artificial metalloenzymes.
    Deuss PJ; Popa G; Botting CH; Laan W; Kamer PC
    Angew Chem Int Ed Engl; 2010 Jul; 49(31):5315-7. PubMed ID: 20572235
    [No Abstract]   [Full Text] [Related]  

  • 33. A new method to determine the structure of the metal environment in metalloproteins: investigation of the prion protein octapeptide repeat Cu(2+) complex.
    Mentler M; Weiss A; Grantner K; del Pino P; Deluca D; Fiori S; Renner C; Klaucke WM; Moroder L; Bertsch U; Kretzschmar HA; Tavan P; Parak FG
    Eur Biophys J; 2005 Mar; 34(2):97-112. PubMed ID: 15452673
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metalloenzymes as Therapeutic Targets.
    Richichi B; Spyroulias GA; Winum JY; Žalubovskis R
    Curr Med Chem; 2019; 26(15):2556-2557. PubMed ID: 31453777
    [No Abstract]   [Full Text] [Related]  

  • 35. Electron paramagnetic resonance spectra of some active cobalt(II) substituted metalloenzymes and other cobalt(II) complexes.
    Kennedy FC; Hill HA; Kaden TA; Vallee BL
    Biochem Biophys Res Commun; 1972 Sep; 48(6):1533-9. PubMed ID: 4342715
    [No Abstract]   [Full Text] [Related]  

  • 36. Electron-spin-resonance/electron-paramagnetic-resonance spectroscopy of iron-sulphur enzymes.
    Cammack R; Patil DS; Fernandez VM
    Biochem Soc Trans; 1985 Jun; 13(3):572-8. PubMed ID: 2993064
    [No Abstract]   [Full Text] [Related]  

  • 37. Metalloenzymes, structural motifs, and inorganic models.
    Karlin KD
    Science; 1993 Aug; 261(5122):701-8. PubMed ID: 7688141
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stereoelectronic properties of metalloenzymes. 4. Bis(imidotetraphenyldithiodiphosphino-S,S')copper(II) as a tetrahedral model for type I copper(II).
    Bereman RD; Wang FT; Najdzionek J; Braitsch DM
    J Am Chem Soc; 1976 Nov; 98(23):7266-8. PubMed ID: 185244
    [No Abstract]   [Full Text] [Related]  

  • 39. The solution structure of paramagnetic metalloproteins.
    Bertini I; Luchinat C; Rosato A
    Prog Biophys Mol Biol; 1996; 66(1):43-80. PubMed ID: 9107132
    [No Abstract]   [Full Text] [Related]  

  • 40. ENDOR and EPR of metalloproteins.
    Lowe DJ
    Prog Biophys Mol Biol; 1992; 57(1):1-22. PubMed ID: 1312737
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.