These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 8255224)

  • 41. ENDOR and EPR of metalloproteins.
    Lowe DJ
    Prog Biophys Mol Biol; 1992; 57(1):1-22. PubMed ID: 1312737
    [No Abstract]   [Full Text] [Related]  

  • 42. 2-{[Bis(2-pyridylmethyl)amino]methyl}-6-[(2-hydroxyanilino)methyl]-4-methylphenol: a novel binucleating asymmetric ligand as a precursor to synthetic models for metalloenzymes.
    Bortoluzzi AJ; Neves A; Rey NA
    Acta Crystallogr C; 2007 Feb; 63(Pt 2):o84-6. PubMed ID: 17284813
    [No Abstract]   [Full Text] [Related]  

  • 43. Editorial for the virtual issue on models of metalloenzymes.
    Tolman WB
    Inorg Chem; 2013 Jul; 52(13):7307-10. PubMed ID: 23819601
    [No Abstract]   [Full Text] [Related]  

  • 44. Theoretical perspectives on bioinorganic chemistry. Part II. Non-heme metalloenzymes.
    Ghosh A
    Curr Opin Chem Biol; 2002 Apr; 6(2):225-6. PubMed ID: 12039008
    [No Abstract]   [Full Text] [Related]  

  • 45. Modeling the active sites in metalloenzymes. 3. Density functional calculations on models for [Fe]-hydrogenase: structures and vibrational frequencies of the observed redox forms and the reaction mechanism at the Diiron Active Center.
    Cao Z; Hall MB
    J Am Chem Soc; 2001 Apr; 123(16):3734-42. PubMed ID: 11457105
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Merging the best of two worlds: artificial metalloenzymes for enantioselective catalysis.
    Ringenberg MR; Ward TR
    Chem Commun (Camb); 2011 Aug; 47(30):8470-6. PubMed ID: 21603692
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electron-mediating Cu(A) centers in proteins: a comparative high field (1)H ENDOR study.
    Epel B; Slutter CS; Neese F; Kroneck PM; Zumft WG; Pecht I; Farver O; Lu Y; Goldfarb D
    J Am Chem Soc; 2002 Jul; 124(27):8152-62. PubMed ID: 12095361
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Artificial metalloenzymes derived from three-helix bundles.
    Tebo AG; Pecoraro VL
    Curr Opin Chem Biol; 2015 Apr; 25():65-70. PubMed ID: 25579452
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Magnetic susceptibility applied to metalloproteins.
    Moss TH
    Methods Enzymol; 1978; 54():379-96. PubMed ID: 215878
    [No Abstract]   [Full Text] [Related]  

  • 50. Stereoelectronic properties of metalloenzymes. 5. Identification and assignment of ligand hyperfine splittings in the electron spin resonance spectrum of galactose oxidase.
    Bereman RD; Kosman DJ
    J Am Chem Soc; 1977 Oct; 99(22):7322-5. PubMed ID: 199640
    [No Abstract]   [Full Text] [Related]  

  • 51. Structure-function relationships of anaerobic gas-processing metalloenzymes.
    Fontecilla-Camps JC; Amara P; Cavazza C; Nicolet Y; Volbeda A
    Nature; 2009 Aug; 460(7257):814-22. PubMed ID: 19675641
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhanced sensitivity of electron-nuclear double resonance (ENDOR) by cross polarisation and relaxation.
    Rizzato R; Bennati M
    Phys Chem Chem Phys; 2014 May; 16(17):7681-5. PubMed ID: 24647689
    [TBL] [Abstract][Full Text] [Related]  

  • 53. De Novo Design of Metalloproteins and Metalloenzymes in a Three-Helix Bundle.
    Plegaria JS; Pecoraro VL
    Methods Mol Biol; 2016; 1414():187-96. PubMed ID: 27094292
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Transition metal electron paramagnetic resonance related to proteins.
    Fee JA
    Methods Enzymol; 1978; 49():512-28. PubMed ID: 206805
    [No Abstract]   [Full Text] [Related]  

  • 55. Spin distribution and the location of protons in paramagnetic proteins.
    Goldfarb D; Arieli D
    Annu Rev Biophys Biomol Struct; 2004; 33():441-68. PubMed ID: 15139821
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The spin-labeling technique.
    Jost PC; Griffith OH
    Methods Enzymol; 1978; 49():369-418. PubMed ID: 206802
    [No Abstract]   [Full Text] [Related]  

  • 57. Coherent Raman detected electron spin resonance spectroscopy of metalloproteins: linking electron spin resonance and magnetic circular dichroism.
    Bingham SJ; Wolverson D; Thomson AJ
    Biochem Soc Trans; 2008 Dec; 36(Pt 6):1187-90. PubMed ID: 19021521
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Artificial metalloenzymes for enantioselective catalysis based on biotin-avidin.
    Collot J; Gradinaru J; Humbert N; Skander M; Zocchi A; Ward TR
    J Am Chem Soc; 2003 Jul; 125(30):9030-1. PubMed ID: 15369356
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Current density imaging by pulsed conduction electron spin resonance.
    Drescher M; Kaplan N; Dormann E
    J Magn Reson; 2007 Jan; 184(1):44-50. PubMed ID: 17029992
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Electron-paramagnetic-resonance studies of Mn(II) complexes with enzymes and substrates.
    Reed GH
    Biochem Soc Trans; 1985 Jun; 13(3):567-71. PubMed ID: 2993063
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.