BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 8255935)

  • 41. Beta-carotene and CNS oxygen toxicity in rats.
    Bitterman N; Melamed Y; Ben-Amotz A
    J Appl Physiol (1985); 1994 Mar; 76(3):1073-6. PubMed ID: 8005847
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Natural beta-carotene and whole body irradiation in rats.
    Ben-Amotz A; Rachmilevich B; Greenberg S; Sela M; Weshler Z
    Radiat Environ Biophys; 1996 Nov; 35(4):285-8. PubMed ID: 9008005
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Accumulation in chick livers of 9-cis versus all-trans beta-carotene.
    Mokady S; Avron M; Ben-Amotz A
    J Nutr; 1990 Aug; 120(8):889-92. PubMed ID: 2380796
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of salinity on the quantity and quality of carotenoids accumulated by Dunaliella salina (strain CONC-007) and Dunaliella bardawil (strain ATCC 30861) Chlorophyta.
    Gómez PI; Barriga A; Cifuentes AS; González MA
    Biol Res; 2003; 36(2):185-92. PubMed ID: 14513713
    [TBL] [Abstract][Full Text] [Related]  

  • 45. All-trans beta-carotene is absorbed preferentially to 9-cis beta-carotene, but the latter accumulates in the tissues of domestic ferrets (Mustela putorius puro).
    Erdman JW; Thatcher AJ; Hofmann NE; Lederman JD; Block SS; Lee CM; Mokady S
    J Nutr; 1998 Nov; 128(11):2009-13. PubMed ID: 9808657
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Simultaneous dietary supplementation of sodium cholate and beta-carotene markedly enhances accumulation of beta-carotene in mice.
    Umegaki K; Aoshima M; Hirota S; Uramoto H; Esashi T
    J Nutr; 1995 Dec; 125(12):3081-6. PubMed ID: 7500187
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Antioxidant activity of 9-cis compared to all-trans beta-carotene in vitro.
    Levin G; Mokady S
    Free Radic Biol Med; 1994 Jul; 17(1):77-82. PubMed ID: 7959168
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bioavailability of the isomer mixture of phytoene and phytofluene-rich alga Dunaliella bardawil in rat plasma and tissues.
    Werman MJ; Mokady S; Ben-Amotz A
    J Nutr Biochem; 2002 Oct; 13(10):585-591. PubMed ID: 12550069
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Changes in beta-carotene levels by long-term administration of natural beta-carotene derived from Dunaliella bardawil in humans.
    Morinobu T; Tamai H; Murata T; Manago M; Takenaka H; Hayashi K; Mino M
    J Nutr Sci Vitaminol (Tokyo); 1994 Oct; 40(5):421-30. PubMed ID: 7891203
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dunaliella biotechnology: methods and applications.
    Hosseini Tafreshi A; Shariati M
    J Appl Microbiol; 2009 Jul; 107(1):14-35. PubMed ID: 19245408
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Determination of carotenoids in Dunaliella salina cultivated in Taiwan and antioxidant capacity of the algal carotenoid extract.
    Hu CC; Lin JT; Lu FJ; Chou FP; Yang DJ
    Food Chem; 2008 Jul; 109(2):439-46. PubMed ID: 26003370
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Protective effect of Dunaliella salina-A marine micro alga, against carbon tetrachloride-induced hepatotoxicity in rats.
    Chidambara Murthy KN; Rajesha J; Vanitha A; Swamy MM; Ravishankar GA
    Hepatol Res; 2005 Dec; 33(4):313-9. PubMed ID: 16890175
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dietary Dunaliella bardawil, a beta-carotene-rich alga, protects against acetic acid-induced small bowel inflammation in rats.
    Lavy A; Naveh Y; Coleman R; Mokady S; Werman MJ
    Inflamm Bowel Dis; 2003 Nov; 9(6):372-9. PubMed ID: 14671486
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mode of Action of the Massively Accumulated beta-Carotene of Dunaliella bardawil in Protecting the Alga against Damage by Excess Irradiation.
    Ben-Amotz A; Shaish A; Avron M
    Plant Physiol; 1989 Nov; 91(3):1040-3. PubMed ID: 16667108
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A strategy to promote carotenoids production in Dunaliella bardawil by melatonin combined with photoinduction.
    Xie SR; Li Y; Chen HH; Liang MH; Jiang JG
    Enzyme Microb Technol; 2022 Nov; 161():110115. PubMed ID: 36030697
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Carotenoid and fatty acid metabolism in light-stressed Dunaliella salina.
    Lamers PP; van de Laak CC; Kaasenbrood PS; Lorier J; Janssen M; De Vos RC; Bino RJ; Wijffels RH
    Biotechnol Bioeng; 2010 Jul; 106(4):638-48. PubMed ID: 20229508
    [TBL] [Abstract][Full Text] [Related]  

  • 57. On the Factors Which Determine Massive beta-Carotene Accumulation in the Halotolerant Alga Dunaliella bardawil.
    Ben-Amotz A; Avron M
    Plant Physiol; 1983 Jul; 72(3):593-7. PubMed ID: 16663050
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Functional Identification of Two Types of Carotene Hydroxylases from the Green Alga
    Liang MH; Xie H; Chen HH; Liang ZC; Jiang JG
    ACS Synth Biol; 2020 Jun; 9(6):1246-1253. PubMed ID: 32408742
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Stereoisomers of beta-Carotene and Phytoene in the Alga Dunaliella bardawil.
    Ben-Amotz A; Lers A; Avron M
    Plant Physiol; 1988 Apr; 86(4):1286-91. PubMed ID: 16666068
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The antioxidant effects of dry apricot in the various tissues of rats with induced cold restraint stress.
    Uguralp S; Ozturk F; Aktay G; Cetin A; Gursoy S
    Nat Prod Res; 2012; 26(16):1535-8. PubMed ID: 21985499
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.