These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 825620)

  • 1. Effects of cerebellar lesions on saccadic eye movements.
    Ritchie L
    J Neurophysiol; 1976 Nov; 39(6):1246-56. PubMed ID: 825620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slow-fast control of eye movements: an instance of Zeeman's model for an action.
    Clement RA; Akman OE
    Biol Cybern; 2020 Oct; 114(4-5):519-532. PubMed ID: 32997159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effect of Stimulus Contrast and Spatial Position on Saccadic Eye Movement Parameters.
    Goliskina V; Ceple I; Kassaliete E; Serpa E; Truksa R; Svede A; Krauze L; Fomins S; Ikaunieks G; Krumina G
    Vision (Basel); 2023 Oct; 7(4):. PubMed ID: 37873896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metronidazole-induced cerebellar dysfunction preferentially involving the saccadic system.
    Yoon HJ; Lee JH; Lee SU; Kim JS
    J Neurol; 2023 Dec; 270(12):6166-6169. PubMed ID: 37688634
    [No Abstract]   [Full Text] [Related]  

  • 5. Publisher Correction: Orchestration of saccadic eye-movements by brain rhythms in macaque Frontal Eye Field.
    Shaverdi Y; Setarehdan SK; Treue S; Esghaei M
    Sci Rep; 2024 Feb; 14(1):3606. PubMed ID: 38351115
    [No Abstract]   [Full Text] [Related]  

  • 6. Consensus Paper: Latent Autoimmune Cerebellar Ataxia (LACA).
    Manto M; Hadjivassiliou M; Baizabal-Carvallo JF; Hampe CS; Honnorat J; Joubert B; Mitoma H; Muñiz-Castrillo S; Shaikh AG; Vogrig A
    Cerebellum; 2024 Apr; 23(2):838-855. PubMed ID: 36991252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The computational neurology of movement under active inference.
    Parr T; Limanowski J; Rawji V; Friston K
    Brain; 2021 Jul; 144(6):1799-1818. PubMed ID: 33704439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Consensus Paper. Cerebellar Reserve: From Cerebellar Physiology to Cerebellar Disorders.
    Mitoma H; Buffo A; Gelfo F; Guell X; Fucà E; Kakei S; Lee J; Manto M; Petrosini L; Shaikh AG; Schmahmann JD
    Cerebellum; 2020 Feb; 19(1):131-153. PubMed ID: 31879843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Basic and translational neuro-ophthalmology of visually guided saccades: disorders of velocity.
    Puri S; Shaikh AG
    Expert Rev Ophthalmol; 2017; 12(6):457-473. PubMed ID: 30774705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the Encoding of Saccade Kinematic Metrics in the Purkinje Cell Layer of the Cerebellar Vermis.
    Kalidindi HT; George Thuruthel T; Laschi C; Falotico E
    Front Comput Neurosci; 2018; 12():108. PubMed ID: 30687055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of cerebellar circuitry alterations in the pathophysiology of autism spectrum disorders.
    Mosconi MW; Wang Z; Schmitt LM; Tsai P; Sweeney JA
    Front Neurosci; 2015; 9():296. PubMed ID: 26388713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microsaccade control signals in the cerebellum.
    Arnstein D; Junker M; Smilgin A; Dicke PW; Thier P
    J Neurosci; 2015 Feb; 35(8):3403-11. PubMed ID: 25716840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Saccadic eye movement abnormalities in autism spectrum disorder indicate dysfunctions in cerebellum and brainstem.
    Schmitt LM; Cook EH; Sweeney JA; Mosconi MW
    Mol Autism; 2014; 5(1):47. PubMed ID: 25400899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catch-up saccades in head-unrestrained conditions reveal that saccade amplitude is corrected using an internal model of target movement.
    Daye PM; Blohm G; Lefèvre P
    J Vis; 2014 Jan; 14(1):. PubMed ID: 24424378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Approaching expert results using a hierarchical cerebellum parcellation protocol for multiple inexpert human raters.
    Bogovic JA; Jedynak B; Rigg R; Du A; Landman BA; Prince JL; Ying SH
    Neuroimage; 2013 Jan; 64():616-29. PubMed ID: 22975160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential retinal origins of separate anatomical channels for pattern and motion vision in rabbit.
    Steele-Russell I; Russell MI; Castiglioni JA; Graham J
    Exp Brain Res; 2012 Oct; 222(1-2):99-111. PubMed ID: 22910899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eye position effects in oculomotor plasticity and visual localization.
    Zimmermann E; Lappe M
    J Neurosci; 2011 May; 31(20):7341-8. PubMed ID: 21593318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The locus of motor activity in the superior colliculus of the rhesus monkey is unaltered during saccadic adaptation.
    Quessy S; Quinet J; Freedman EG
    J Neurosci; 2010 Oct; 30(42):14235-44. PubMed ID: 20962244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Behavior of the oculomotor vermis for five different types of saccade.
    Kojima Y; Soetedjo R; Fuchs AF
    J Neurophysiol; 2010 Dec; 104(6):3667-76. PubMed ID: 20962069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of GABA agonist and antagonist injections into the oculomotor vermis on horizontal saccades.
    Kojima Y; Soetedjo R; Fuchs AF
    Brain Res; 2010 Dec; 1366():93-100. PubMed ID: 20951682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.