These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 8257100)

  • 1. Dissimilatory metal reduction.
    Lovley DR
    Annu Rev Microbiol; 1993; 47():263-90. PubMed ID: 8257100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissimilatory Fe(III) and Mn(IV) reduction.
    Lovley DR; Holmes DE; Nevin KP
    Adv Microb Physiol; 2004; 49():219-86. PubMed ID: 15518832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Thermophilic microbial metal reduction].
    Slobodkin AI
    Mikrobiologiia; 2005; 74(5):581-95. PubMed ID: 16315976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing bacteria.
    Liu C; Gorby YA; Zachara JM; Fredrickson JK; Brown CF
    Biotechnol Bioeng; 2002 Dec; 80(6):637-49. PubMed ID: 12378605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioremediation of organic and metal contaminants with dissimilatory metal reduction.
    Lovley DR
    J Ind Microbiol; 1995 Feb; 14(2):85-93. PubMed ID: 7766214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction of Fe(III), Mn(IV), and toxic metals at 100 degrees C by Pyrobaculum islandicum.
    Kashefi K; Lovley DR
    Appl Environ Microbiol; 2000 Mar; 66(3):1050-6. PubMed ID: 10698770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissimilatory Fe(III) and Mn(IV) reduction.
    Lovley DR
    Microbiol Rev; 1991 Jun; 55(2):259-87. PubMed ID: 1886521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissimilatory reduction of Cr(VI), Fe(III), and U(VI) by Cellulomonas isolates.
    Sani RK; Peyton BM; Smith WA; Apel WA; Petersen JN
    Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):192-9. PubMed ID: 12382063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of U(VI) reduction by a dissimilatory Fe(III)-reducing bacterium under non-growth conditions.
    Truex MJ; Peyton BM; Valentine NB; Gorby YA
    Biotechnol Bioeng; 1997 Aug; 55(3):490-6. PubMed ID: 18636514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemistry, physiology and biotechnology of sulfate-reducing bacteria.
    Barton LL; Fauque GD
    Adv Appl Microbiol; 2009; 68():41-98. PubMed ID: 19426853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aerobic bioreduction of nickel(II) to elemental nickel with concomitant biomineralization.
    Zhan G; Li D; Zhang L
    Appl Microbiol Biotechnol; 2012 Oct; 96(1):273-81. PubMed ID: 22215072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering and kinetic aspects of bacterial uranium reduction for the remediation of uranium contaminated environments.
    Lakaniemi AM; Douglas GB; Kaksonen AH
    J Hazard Mater; 2019 Jun; 371():198-212. PubMed ID: 30851673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial catalytic processes for transformation of metals.
    Paknikar KM
    Hindustan Antibiot Bull; 1993; 35(1-2):183-9. PubMed ID: 8181951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial reduction of metals and radionuclides.
    Lloyd JR
    FEMS Microbiol Rev; 2003 Jun; 27(2-3):411-25. PubMed ID: 12829277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobes into heavy metal: Dissimilatory metal reduction in anoxic environments.
    Lovley DR
    Trends Ecol Evol; 1993 Jun; 8(6):213-7. PubMed ID: 21236151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Desulfuromonas palmitatis sp. nov., a marine dissimilatory Fe(III) reducer that can oxidize long-chain fatty acids.
    Coates JD; Lonergan DJ; Philips EJ; Jenter H; Lovley DR
    Arch Microbiol; 1995 Dec; 164(6):406-13. PubMed ID: 8588742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anaerobic bioremediation of hexavalent uranium in groundwater by reductive precipitation with methanogenic granular sludge.
    Tapia-Rodriguez A; Luna-Velasco A; Field JA; Sierra-Alvarez R
    Water Res; 2010 Apr; 44(7):2153-62. PubMed ID: 20060558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Marine Bacillus spores as catalysts for oxidative precipitation and sorption of metals.
    Francis CA; Tebo BM
    J Mol Microbiol Biotechnol; 1999 Aug; 1(1):71-8. PubMed ID: 10941787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hexavalent chromium reduction by Cellulomonas sp. strain ES6: the influence of carbon source, iron minerals, and electron shuttling compounds.
    Field EK; Gerlach R; Viamajala S; Jennings LK; Peyton BM; Apel WA
    Biodegradation; 2013 Jun; 24(3):437-50. PubMed ID: 23135488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.