These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 8257674)

  • 1. Structure of the Mg(2+)-bound form of CheY and mechanism of phosphoryl transfer in bacterial chemotaxis.
    Stock AM; Martinez-Hackert E; Rasmussen BF; West AH; Stock JB; Ringe D; Petsko GA
    Biochemistry; 1993 Dec; 32(49):13375-80. PubMed ID: 8257674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Divalent metal ion binding to the CheY protein and its significance to phosphotransfer in bacterial chemotaxis.
    Lukat GS; Stock AM; Stock JB
    Biochemistry; 1990 Jun; 29(23):5436-42. PubMed ID: 2201404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnesium binding to the bacterial chemotaxis protein CheY results in large conformational changes involving its functional surface.
    Bellsolell L; Prieto J; Serrano L; Coll M
    J Mol Biol; 1994 May; 238(4):489-95. PubMed ID: 8176739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional structure of CheY, the response regulator of bacterial chemotaxis.
    Stock AM; Mottonen JM; Stock JB; Schutt CE
    Nature; 1989 Feb; 337(6209):745-9. PubMed ID: 2645526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of activated CheY. Comparison with other activated receiver domains.
    Lee SY; Cho HS; Pelton JG; Yan D; Berry EA; Wemmer DE
    J Biol Chem; 2001 May; 276(19):16425-31. PubMed ID: 11279165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and catalytic mechanism of the E. coli chemotaxis phosphatase CheZ.
    Zhao R; Collins EJ; Bourret RB; Silversmith RE
    Nat Struct Biol; 2002 Aug; 9(8):570-5. PubMed ID: 12080332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response regulation in bacterial chemotaxis.
    Lukat GS; Stock JB
    J Cell Biochem; 1993 Jan; 51(1):41-6. PubMed ID: 8381790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of the highly conserved aspartate and lysine residues in the response regulator of bacterial chemotaxis.
    Lukat GS; Lee BH; Mottonen JM; Stock AM; Stock JB
    J Biol Chem; 1991 May; 266(13):8348-54. PubMed ID: 1902474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Further insights into the mechanism of function of the response regulator CheY from crystallographic studies of the CheY--CheA(124--257) complex.
    Gouet P; Chinardet N; Welch M; Guillet V; Cabantous S; Birck C; Mourey L; Samama JP
    Acta Crystallogr D Biol Crystallogr; 2001 Jan; 57(Pt 1):44-51. PubMed ID: 11134926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uncoupled phosphorylation and activation in bacterial chemotaxis. The 2.3 A structure of an aspartate to lysine mutant at position 13 of CheY.
    Jiang M; Bourret RB; Simon MI; Volz K
    J Biol Chem; 1997 May; 272(18):11850-5. PubMed ID: 9115243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of phosphorylation, Mg2+, and conformation of the chemotaxis protein CheY on its binding to the flagellar switch protein FliM.
    Welch M; Oosawa K; Aizawa SI; Eisenbach M
    Biochemistry; 1994 Aug; 33(34):10470-6. PubMed ID: 8068685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signal transduction in chemotaxis. A propagating conformation change upon phosphorylation of CheY.
    Lowry DF; Roth AF; Rupert PB; Dahlquist FW; Moy FJ; Domaille PJ; Matsumura P
    J Biol Chem; 1994 Oct; 269(42):26358-62. PubMed ID: 7929354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing Mechanistic Similarities between Response Regulator Signaling Proteins and Haloacid Dehalogenase Phosphatases.
    Immormino RM; Starbird CA; Silversmith RE; Bourret RB
    Biochemistry; 2015 Jun; 54(22):3514-27. PubMed ID: 25928369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structures of beryllium fluoride-free and beryllium fluoride-bound CheY in complex with the conserved C-terminal peptide of CheZ reveal dual binding modes specific to CheY conformation.
    Guhaniyogi J; Robinson VL; Stock AM
    J Mol Biol; 2006 Jun; 359(3):624-45. PubMed ID: 16674976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Matching biochemical reaction kinetics to the timescales of life: structural determinants that influence the autodephosphorylation rate of response regulator proteins.
    Pazy Y; Wollish AC; Thomas SA; Miller PJ; Collins EJ; Bourret RB; Silversmith RE
    J Mol Biol; 2009 Oct; 392(5):1205-20. PubMed ID: 19646451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The response regulators CheB and CheY exhibit competitive binding to the kinase CheA.
    Li J; Swanson RV; Simon MI; Weis RM
    Biochemistry; 1995 Nov; 34(45):14626-36. PubMed ID: 7578071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensory transduction in bacterial chemotaxis involves phosphotransfer between Che proteins.
    Wylie D; Stock A; Wong CY; Stock J
    Biochem Biophys Res Commun; 1988 Mar; 151(2):891-6. PubMed ID: 3279958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The N terminus of the flagellar switch protein, FliM, is the binding domain for the chemotactic response regulator, CheY.
    Bren A; Eisenbach M
    J Mol Biol; 1998 May; 278(3):507-14. PubMed ID: 9600834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorylation-dependent binding of the chemotaxis signal molecule CheY to its phosphatase, CheZ.
    Blat Y; Eisenbach M
    Biochemistry; 1994 Feb; 33(4):902-6. PubMed ID: 8305438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Switched or not?: the structure of unphosphorylated CheY bound to the N terminus of FliM.
    Dyer CM; Dahlquist FW
    J Bacteriol; 2006 Nov; 188(21):7354-63. PubMed ID: 17050923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.