These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 8257698)
1. Mutation of lysine 233 to alanine introduces positive cooperativity into tyrosyl-tRNA synthetase. First EA; Fersht AR Biochemistry; 1993 Dec; 32(49):13651-7. PubMed ID: 8257698 [TBL] [Abstract][Full Text] [Related]
2. Activation of D-tyrosine by Bacillus stearothermophilus tyrosyl-tRNA synthetase: 2. Cooperative binding of ATP is limited to the initial turnover of the enzyme. Sheoran A; First EA J Biol Chem; 2008 May; 283(19):12971-80. PubMed ID: 18319246 [TBL] [Abstract][Full Text] [Related]
3. Involvement of threonine 234 in catalysis of tyrosyl adenylate formation by tyrosyl-tRNA synthetase. First EA; Fersht AR Biochemistry; 1993 Dec; 32(49):13644-50. PubMed ID: 8257697 [TBL] [Abstract][Full Text] [Related]
4. Mutational and kinetic analysis of a mobile loop in tyrosyl-tRNA synthetase. First EA; Fersht AR Biochemistry; 1993 Dec; 32(49):13658-63. PubMed ID: 8257699 [TBL] [Abstract][Full Text] [Related]
5. Correlating amino acid conservation with function in tyrosyl-tRNA synthetase. Xin Y; Li W; Dwyer DS; First EA J Mol Biol; 2000 Oct; 303(2):287-98. PubMed ID: 11023793 [TBL] [Abstract][Full Text] [Related]
6. Analysis of the role of the KMSKS loop in the catalytic mechanism of the tyrosyl-tRNA synthetase using multimutant cycles. First EA; Fersht AR Biochemistry; 1995 Apr; 34(15):5030-43. PubMed ID: 7711024 [TBL] [Abstract][Full Text] [Related]
7. Internal thermodynamics of position 51 mutants and natural variants of tyrosyl-tRNA synthetase. Ho CK; Fersht AR Biochemistry; 1986 Apr; 25(8):1891-7. PubMed ID: 3518795 [TBL] [Abstract][Full Text] [Related]
8. Stabilization of the transition state for the transfer of tyrosine to tRNA(Tyr) by tyrosyl-tRNA synthetase. Xin Y; Li W; First EA J Mol Biol; 2000 Oct; 303(2):299-310. PubMed ID: 11023794 [TBL] [Abstract][Full Text] [Related]
9. Reversible dissociation of dimeric tyrosyl-tRNA synthetase by mutagenesis at the subunit interface. Jones DH; McMillan AJ; Fersht AR; Winter G Biochemistry; 1985 Oct; 24(21):5852-7. PubMed ID: 4084496 [TBL] [Abstract][Full Text] [Related]
10. Comparison of the catalytic roles played by the KMSKS motif in the human and Bacillus stearothermophilus trosyl-tRNA synthetases. Austin J; First EA J Biol Chem; 2002 Aug; 277(32):28394-9. PubMed ID: 12016229 [TBL] [Abstract][Full Text] [Related]
11. Thermodynamic analysis reveals a temperature-dependent change in the catalytic mechanism of bacillus stearothermophilus tyrosyl-tRNA synthetase. Sharma G; First EA J Biol Chem; 2009 Feb; 284(7):4179-90. PubMed ID: 19098308 [TBL] [Abstract][Full Text] [Related]
12. Fine structure-activity analysis of mutations at position 51 of tyrosyl-tRNA synthetase. Fersht AR; Wilkinson AJ; Carter P; Winter G Biochemistry; 1985 Oct; 24(21):5858-61. PubMed ID: 3002425 [TBL] [Abstract][Full Text] [Related]
13. Transition-state stabilization in the mechanism of tyrosyl-tRNA synthetase revealed by protein engineering. Leatherbarrow RJ; Fersht AR; Winter G Proc Natl Acad Sci U S A; 1985 Dec; 82(23):7840-4. PubMed ID: 3865201 [TBL] [Abstract][Full Text] [Related]
14. Use of binding energy in catalysis: optimization of rate in a multistep reaction. Avis JM; Fersht AR Biochemistry; 1993 May; 32(20):5321-6. PubMed ID: 8499436 [TBL] [Abstract][Full Text] [Related]
15. Site-directed mutagenesis as a probe of enzyme structure and catalysis: tyrosyl-tRNA synthetase cysteine-35 to glycine-35 mutation. Wilkinson AJ; Fersht AR; Blow DM; Winter G Biochemistry; 1983 Jul; 22(15):3581-6. PubMed ID: 6615786 [TBL] [Abstract][Full Text] [Related]
16. Kinetic and thermodynamic properties of wild-type and engineered mutants of tyrosyl-tRNA synthetase analyzed by pyrophosphate-exchange kinetics. Wells TN; Knill-Jones JW; Gray TE; Fersht AR Biochemistry; 1991 May; 30(21):5151-6. PubMed ID: 1645192 [TBL] [Abstract][Full Text] [Related]
17. An essential residue in the flexible peptide linking the two idiosynchratic domains of bacterial tyrosyl-tRNA synthetases. Gaillard C; Bedouelle H Biochemistry; 2001 Jun; 40(24):7192-9. PubMed ID: 11401566 [TBL] [Abstract][Full Text] [Related]
18. Modification of the amino acid specificity of tyrosyl-tRNA synthetase by protein engineering. de Prat Gay G; Duckworth HW; Fersht AR FEBS Lett; 1993 Mar; 318(2):167-71. PubMed ID: 8440372 [TBL] [Abstract][Full Text] [Related]
19. Role of residue Glu152 in the discrimination between transfer RNAs by tyrosyl-tRNA synthetase from Bacillus stearothermophilus. Vidal-Cros A; Bedouelle H J Mol Biol; 1992 Feb; 223(3):801-10. PubMed ID: 1542120 [TBL] [Abstract][Full Text] [Related]
20. Free energy of hydrolysis of tyrosyl adenylate and its binding to wild-type and engineered mutant tyrosyl-tRNA synthetases. Wells TN; Ho CK; Fersht AR Biochemistry; 1986 Oct; 25(21):6603-8. PubMed ID: 3466647 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]