These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 8260156)

  • 1. NADPH-diaphorase histochemistry reveals cone distributions in adult human retinae.
    Diaz-Araya CM; Provis JM; Billson FA
    Aust N Z J Ophthalmol; 1993 Aug; 21(3):171-9. PubMed ID: 8260156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoreceptor topography of the retina in the adult pigtail macaque (Macaca nemestrina).
    Packer O; Hendrickson AE; Curcio CA
    J Comp Neurol; 1989 Oct; 288(1):165-83. PubMed ID: 2794135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human photoreceptor topography.
    Curcio CA; Sloan KR; Kalina RE; Hendrickson AE
    J Comp Neurol; 1990 Feb; 292(4):497-523. PubMed ID: 2324310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topography of ganglion cells in human retina.
    Curcio CA; Allen KA
    J Comp Neurol; 1990 Oct; 300(1):5-25. PubMed ID: 2229487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of opsin expression and apoptosis in determination of cone types in human retina.
    Cornish EE; Xiao M; Yang Z; Provis JM; Hendrickson AE
    Exp Eye Res; 2004 Jun; 78(6):1143-54. PubMed ID: 15109921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gradients of cone differentiation and FGF expression during development of the foveal depression in macaque retina.
    Cornish EE; Madigan MC; Natoli R; Hales A; Hendrickson AE; Provis JM
    Vis Neurosci; 2005; 22(4):447-59. PubMed ID: 16212702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The topography of cone photoreceptors in the retina of a diurnal rodent, the agouti (Dasyprocta aguti).
    Rocha FA; Ahnelt PK; Peichl L; Saito CA; Silveira LC; De Lima SM
    Vis Neurosci; 2009; 26(2):167-75. PubMed ID: 19250601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of short-wavelength-sensitive cones in human fetal and postnatal retina: early development of spatial order and density profiles.
    Cornish EE; Hendrickson AE; Provis JM
    Vision Res; 2004; 44(17):2019-26. PubMed ID: 15149835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Density profile of blue-sensitive cones along the horizontal meridian of macaque retina.
    de Monasterio FM; McCrane EP; Newlander JK; Schein SJ
    Invest Ophthalmol Vis Sci; 1985 Mar; 26(3):289-302. PubMed ID: 2579042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Topography of cones and rods in the tree shrew retina.
    Müller B; Peichl L
    J Comp Neurol; 1989 Apr; 282(4):581-94. PubMed ID: 2723153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution and development of short-wavelength cones differ between Macaca monkey and human fovea.
    Bumsted K; Hendrickson A
    J Comp Neurol; 1999 Jan; 403(4):502-16. PubMed ID: 9888315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development redistribution of photoreceptors across the Macaca nemestrina (pigtail macaque) retina.
    Packer O; Hendrickson AE; Curcio CA
    J Comp Neurol; 1990 Aug; 298(4):472-93. PubMed ID: 2229476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aging of the human retina. Differential loss of neurons and retinal pigment epithelial cells.
    Gao H; Hollyfield JG
    Invest Ophthalmol Vis Sci; 1992 Jan; 33(1):1-17. PubMed ID: 1730530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative spatial analysis of the distribution of NADPH-diaphorase-positive neurons in the developing and mature rat retina.
    Palanza L; Jhaveri S; Donati S; Nuzzi R; Vercelli A
    Brain Res Bull; 2005 Apr; 65(4):349-60. PubMed ID: 15811601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differentiation of short-wavelength-sensitive cones by NADPH diaphorase histochemistry.
    Petry HM; Murphy HA
    Proc Natl Acad Sci U S A; 1995 May; 92(11):5121-3. PubMed ID: 7761459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NADPH-diaphorase reactivity in adult and developing cat retinae.
    Vaccaro TM; Cobcroft MD; Provis JM; Mitrofanis J
    Cell Tissue Res; 1991 Aug; 265(2):371-9. PubMed ID: 1934034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nutritional manipulation of primate retinas. IV. Effects of n--3 fatty acids, lutein, and zeaxanthin on S-cones and rods in the foveal region.
    Leung IY; Sandstrom MM; Zucker CL; Neuringer M; Max Snodderly D
    Exp Eye Res; 2005 Nov; 81(5):513-29. PubMed ID: 15916761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of catecholaminergic, indoleamine-accumulating and NADPH-diaphorase amacrine cells in rabbit retinae.
    Mitrofanis J; Robinson SR; Ashwell K
    J Comp Neurol; 1992 May; 319(4):560-85. PubMed ID: 1619045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuronal nitric oxide synthase immunoreactive neurons in the mammalian retina.
    Kim IB; Oh SJ; Chun MH
    Microsc Res Tech; 2000 Jul; 50(2):112-23. PubMed ID: 10891875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative morphology of the central fovea in the primate retina.
    Krebs W; Krebs IP
    Am J Anat; 1989 Mar; 184(3):225-36. PubMed ID: 2750678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.